题意
一颗(n<=1e5)的树,要求把其分为(k<=n)个子树,要求每个子树的最大值最小
最大值最小 二分典中典 我们从下往上 如果发现一个树的大小 >mid 我们就切割它
#include <bits/stdc++.h>
using namespace std;
#define int long long
//typedef long long ll;
typedef pair<int,int> pii;
#define x first
#define y second
#define pb push_back
#define inf 1e18
#define IOS std::ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
#define fer(i,a,b) for(int i=a;i<=b;i++)
#define der(i,a,b) for(int i=a;i>=b;i--)
template<typename _T>
void r(_T &x){
_T f=1;x=0;char s=getchar();
while(s>'9'||s<'0'){if(s=='-')f=-1;s=getchar();}
while('0'<=s&&s<='9'){x=(x<<3)+(x<<1)+(s^48);s=getchar();}
x*=f;
}
template<typename _T>
void print(_T x){if(x<0)putchar('-'),print(-x);if(x>9)print(x/10);putchar(x%10+'0');}
const int maxn=1e5+10;
const int mod=1e9+7;
int qmi(int a,int b)
{int res=1; while(b){ if(b&1) res=res*a%mod; a=a*a%mod; b>>=1; } return res;}
const int N=2e6+10;
int dr[4][2]={{-1,0},{1,0},{0,-1},{0,1}};
int n,k;
int f[N];
int w[N];
vector<int>g[N];
int cas=1;
int dfs(int u,int fa,int x)
{
int cnt=0;
vector<int>q;
for(auto v:g[u])
{
if(v==fa)continue;
cnt+=dfs(v,u,x);
q.pb(f[v]);
}
f[u]=w[u];
sort(q.begin(),q.end());
for(auto t:q)
{
if(f[u]+t<=x)f[u]+=t;
else cnt++;
}
return cnt;
}
void solve()
{
cin>>n>>k;
fer(i,1,n)g[i].clear();
fer(i,1,n-1)
{
int a,b;
cin>>a>>b;
g[a].pb(b);
g[b].pb(a);
}
int l=0;
int r=0;
fer(i,1,n)
{
cin>>w[i];
l=max(l,w[i]);
r+=w[i];
}
while(l<r)
{
int mid=(l+r)>>1;
if(dfs(1,0,mid)+1<=k)r=mid;
else l=mid+1;
}
printf("Case #%d: %lld\n",cas++,l);
}
signed main()
{
IOS;
int _;
cin>>_;
while(_--) solve();
return 0;
}