一、发布确认高级篇
- 在生产环境中由于一些不明原因,导致 rabbitmq 重启,在 RabbitMQ 重启期间生产者消息投递失败,导致消息丢失,需要手动处理和恢复
- 如何才能进行 RabbitMQ 的消息可靠投递呢?
- 特别是在这样比较极端的情况,RabbitMQ 集群不可用的时候,无法投递的消息该如何处理呢?
1.1 发布确认 springboot 版本
- 这部分的内容是 从生产者到交换机之间 的一种消息可靠传输的安全机制
1️⃣ 确认机制方案
- 我们生产者在发送消息后,会对消息进行缓存,如果 rabbitmq 宕机了,我们可以从缓存中取数据重新发送
- 当交换机接收到了消息,就会从缓存中清除已经收到的消息
2️⃣ 代码架构图
3️⃣ 配置文件
- 在配置文件中需要添加配置,因为我们默认这种回调机制是关闭的
spring.rabbitmq.publisher-confirm-type=correlated
- 对于这个配置的取值可以有三种:
- NONE: 禁用发布确认模式,是默认值
- CORRELATED: 发布消息成功到交换器后会触发回调方法
- SIMPLE: 它会产生两种效果
- 其一效果和 CORRELATED 值一样会触发回调方法
- 其二在发布消息成功后使用 rabbitTemplate 调用 waitForConfirms 或 waitForConfirmsOrDie 方法等待 broker 节点返回发送结果,根据返回结果来判定下一步的逻辑,要注意的点是waitForConfirmsOrDie 方法如果返回 false 则会关闭 channel,则接下来无法发送消息到 broker
4️⃣ 添加配置类
package com.atguigu.rabbitmq.config;
import org.springframework.amqp.core.*;
import org.springframework.beans.factory.FactoryBean;
import org.springframework.beans.factory.annotation.Qualifier;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
/**
* @author Bonbons
* @version 1.0
* 这里是用来演示发布订阅高级篇的配置
*/
@Configuration
public class ConfirmConfig {
//定义交换机、队列、RoutingKey
public static final String CONFIRM_EXCHANGE_NAME = "confirm_exchange";
public static final String CONFIRM_QUEUE_NAME = "confirm_queue";
public static final String CONFIRM_ROUTING_KEY = "key1";
//声明
@Bean
public DirectExchange confirmExchange(){
return new DirectExchange(CONFIRM_EXCHANGE_NAME);
}
@Bean
public Queue confirmQueue(){
return QueueBuilder.durable(CONFIRM_QUEUE_NAME).build();
}
@Bean
public Binding queueBindingExchange(@Qualifier("confirmExchange") DirectExchange confirmExchange,
@Qualifier("confirmQueue") Queue confirmQueue){
return BindingBuilder.bind(confirmQueue).to(confirmExchange).with("key1");
}
}
5️⃣ 回调接口
- 因为这部分回调功能的实现在一个私有接口中 RabbitTemplate.ConfirmCallback
- 首先我们要定义一个组件类去实现这个接口
- 其中 confirm 方法的第二个参数可以判断消息是否成功被交换机接收了
- 因为这是个私有接口,所以我们需要调用初始化方法注入
package com.atguigu.rabbitmq.config;
import lombok.extern.slf4j.Slf4j;
import org.springframework.amqp.core.ReturnedMessage;
import org.springframework.amqp.rabbit.connection.CorrelationData;
import org.springframework.amqp.rabbit.core.RabbitTemplate;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Component;
import javax.annotation.PostConstruct;
/**
* @author Bonbons
* @version 1.0
* 为了解决我们交换机问题,我们使用生产者发送消息回调接口,
* 就是消息发送完,会执行我们定制的回调函数来返回消息的状态和内容
*/
@Slf4j
@Component
public class MyCallback implements RabbitTemplate.ConfirmCallback{
//因为这个接口是内部私有接口,在程序执行正常不会执行到我们的这个实现类的,所以我们需要将其注入到其中
@Autowired
private RabbitTemplate rabbitTemplate;
@PostConstruct
public void init(){
//通过初始化注入
rabbitTemplate.setConfirmCallback(this);
}
/**
* 参数说明
* @param correlationData 消息id和消息内容
* @param b 是否接收成功
* @param s 未成功接收的原因
*/
@Override
public void confirm(CorrelationData correlationData, boolean b, String s) {
//获取到消息的id
String id = correlationData != null ? correlationData.getId() : "";
//判断消息发送是否被交换机成功接收
if(b){
log.info("交换机已收到id为{}的消息", id);
}else{
log.info("交换机未收到id为{}的消息,由于 {} 原因", id, s);
}
}
}
6️⃣ 消息生产者
package com.atguigu.rabbitmq.controller;
import com.atguigu.rabbitmq.config.ConfirmConfig;
import com.atguigu.rabbitmq.config.MyCallback;
import lombok.extern.slf4j.Slf4j;
import org.springframework.amqp.rabbit.connection.CorrelationData;
import org.springframework.amqp.rabbit.core.RabbitTemplate;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.*;
import javax.annotation.PostConstruct;
/**
* @author Bonbons
* @version 1.0
* 发布订阅高级篇测试
* 主要就是模拟交换机或队列出问题的情况,以及如何来解决
*/
@Slf4j
@RestController
@RequestMapping("/confirm")
public class ProducerController {
//需要使用RabbitTemplate来发送数据
@Autowired
RabbitTemplate rabbitTemplate;
//发送普通消息
@GetMapping("/sendMessage/{message}")
public void sendMessage(@PathVariable String message){
//此处定义了我们发送消息的id
CorrelationData correlationData = new CorrelationData("1");
log.info("发送消息: " + message);
rabbitTemplate.convertAndSend(ConfirmConfig.CONFIRM_EXCHANGE_NAME, ConfirmConfig.CONFIRM_ROUTING_KEY, message, correlationData);
CorrelationData correlationData2 = new CorrelationData("2");
log.info("发送消息: " + message);
//两个都取消了
rabbitTemplate.convertAndSend(ConfirmConfig.CONFIRM_EXCHANGE_NAME, ConfirmConfig.CONFIRM_ROUTING_KEY, message, correlationData2);
}
}
7️⃣ 消息消费者
package com.atguigu.rabbitmq.consumer;
import com.atguigu.rabbitmq.config.ConfirmConfig;
import lombok.extern.slf4j.Slf4j;
import org.springframework.amqp.core.Message;
import org.springframework.amqp.rabbit.annotation.RabbitListener;
import org.springframework.stereotype.Component;
/**
* @author Bonbons
* @version 1.0
*/
@Slf4j
@Component
public class ConfirmConsumer {
//监听
@RabbitListener(queues = ConfirmConfig.CONFIRM_QUEUE_NAME)
public void receiveConfirmMessage(Message message){
log.info("接收到confirm.queue队列消息: " + new String(message.getBody()));
}
}
- 运行我们的主启动类,此时发送消息(通过浏览器携带参数发起请求)是可以正常接收的
- 尽管实现了功能,但是这样是无法说明问题的,所以我们通过找不到交换机模拟交换机故障
rabbitTemplate.convertAndSend(ConfirmConfig.CONFIRM_EXCHANGE_NAME + "蓄意破坏", ConfirmConfig.CONFIRM_ROUTING_KEY, message, correlationData);
- 此时再次运行并发出相同请求的效果如下:
- 通过找不到接收消息的队列,来模拟队列出现故障:
rabbitTemplate.convertAndSend(ConfirmConfig.CONFIRM_EXCHANGE_NAME, ConfirmConfig.CONFIRM_ROUTING_KEY + "没有对应的队列", message, correlationData2);
- 此时发现控制台可以看出消费者没有接收到消息,但是从生产者到交换机的回调没有出现任何问题
- 那么我们如何才能解决这种无法路由的问题呢?
- 引出我们的回退消息
2.2 回退消息
- 需要在配置文件中开启回退机制,最下面的那条
spring.rabbitmq.host=8.130.95.101
spring.rabbitmq.port=5672
spring.rabbitmq.username=admin
spring.rabbitmq.password=123
spring.rabbitmq.publisher-confirm-type=correlated
spring.rabbitmq.publisher-returns=true
1️⃣ Mandatory 参数
- 在仅开启了生产者确认机制的情况下,交换机接收到消息后,会直接给消息生产者发送确认消息,如果发现该消息不可路由,那么消息会被直接丢弃,此时生产者是不知道消息被丢弃这个事件的
- 那么如何让无法被路由的消息帮我想办法处理一下?最起码通知我一声,我好自己处理啊
- 通过设置 mandatory 参数可以在当消息传递过程中不可达目的地时将消息返回给生产者 【不可路由】
2️⃣ 回调接口
- 这部分的回调是在 RabbitTemplate 类的 ReturnCallback 私有接口完成的
- 所以只需要在我们上面设计的 MyCallback 文件中重写此部分对应的方法并添加到初始化注入中即可
- 因为方便看,我还是给出了完成代码
package com.atguigu.rabbitmq.config;
import lombok.extern.slf4j.Slf4j;
import org.springframework.amqp.core.ReturnedMessage;
import org.springframework.amqp.rabbit.connection.CorrelationData;
import org.springframework.amqp.rabbit.core.RabbitTemplate;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Component;
import javax.annotation.PostConstruct;
/**
* @author Bonbons
* @version 1.0
* 为了解决我们交换机问题,我们使用生产者发送消息回调接口,
* 就是消息发送完,会执行我们定制的回调函数来返回消息的状态和内容
*/
@Slf4j
@Component
public class MyCallback implements RabbitTemplate.ConfirmCallback, RabbitTemplate.ReturnsCallback{
//因为这个接口是内部私有接口,在程序执行正常不会执行到我们的这个实现类的,所以我们需要将其注入到其中
@Autowired
private RabbitTemplate rabbitTemplate;
@PostConstruct
public void init(){
//通过初始化注入
rabbitTemplate.setConfirmCallback(this);
rabbitTemplate.setReturnsCallback(this);
}
/**
* 参数说明
* @param correlationData 消息id和消息内容
* @param b 是否接收成功
* @param s 未成功接收的原因
*/
@Override
public void confirm(CorrelationData correlationData, boolean b, String s) {
//获取到消息的id
String id = correlationData != null ? correlationData.getId() : "";
//判断消息发送是否被交换机成功接收
if(b){
log.info("交换机已收到id为{}的消息", id);
}else{
log.info("交换机未收到id为{}的消息,由于 {} 原因", id, s);
}
}
@Override
public void returnedMessage(ReturnedMessage returnedMessage) {
log.info("消息: {} 被交换机{}退回,退回原因: {}, 路由Key: {}",
new String(returnedMessage.getMessage().getBody()),
returnedMessage.getExchange(),
returnedMessage.getReplyText(),
returnedMessage.getRoutingKey());
}
}
- 按照我的这种方法,生产者和消费者和上面的代码相同
- 测试效果如下:
1.3 备份交换机
有了 mandatory 参数和回退消息,我们获得了对无法投递消息的感知能力,有机会在生产者的消息无法被投递时发现并处理。但有时候,我们并不知道该如何处理这些无法路由的消息,最多打个日志,然后触发报警,再来手动处理。而通过日志来处理这些无法路由的消息是很不优雅的做法,特别是当生产者所在的服务有多台机器的时候,手动复制日志会更加麻烦而且容易出错。而且设置 mandatory 参数会增加生产者的复杂性,需要添加处理这些被退回的消息的逻辑。如果既不想丢失消息,又不想增加生产者的复杂性,该怎么做呢?前面在设置死信队列的文章中,我们提到,可以为队列设置死信交换机来存储那些处理失败的消息,可是这些不可路由消息根本没有机会进入到队列,因此无法使用死信队列来保存消息。在 RabbitMQ 中,有一种备份交换机的机制存在,可以很好的应对这个问题
- 什么是备份交换机呢?
- 备份交换机可以理解为 RabbitMQ 中交换机的“备胎”
- 当我们为某一个交换机声明一个对应的备份交换机时,就是为它创建一个备胎
- 当交换机接收到一条不可路由消息时,将会把这条消息转发到备份交换机中,由备份交换机来进行转发和处理
- 通常备份交换机的类型为 Fanout ,这样就能把所有消息都投递到与其绑定的队列中
- 然后我们在备份交换机下绑定一个队列,这样所有那些原交换机无法被路由的消息,就会都进入这个队列了。
- 当然,我们还可以建立一个报警队列,用独立的消费者来进行监测和报警。
1️⃣ 代码架构图
- 当出现无法路由的消息,我们的交换机就将消息发送给我们的备份交换机
- 备份交换机会以发布订阅的方式,将消息发送给所有绑定到备份交换机的队列
- 我们设置一个生产者、两个交换机、三个队列、两个消费者 【因为如果处理警告的消费者获得了消息,那么备份队列也会获得消息】
2️⃣ 修改配置类
- 在我们之前的 ConfirmConfig 配置类中声明我们这部分的内容
package com.atguigu.rabbitmq.config;
import org.springframework.amqp.core.*;
import org.springframework.beans.factory.FactoryBean;
import org.springframework.beans.factory.annotation.Qualifier;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
/**
* @author Bonbons
* @version 1.0
* 这里是用来演示发布订阅高级篇的配置
*/
@Configuration
public class ConfirmConfig {
//定义交换机、队列、RoutingKey
public static final String CONFIRM_EXCHANGE_NAME = "confirm_exchange";
public static final String CONFIRM_QUEUE_NAME = "confirm_queue";
public static final String CONFIRM_ROUTING_KEY = "key1";
//添加我们备份交换机
public static final String BACKUP_EXCHANGE_NAME = "backup_exchange";
//备份队列
public static final String BACKUP_QUEUE_NAME = "backup_queue";
//报警队列
public static final String WARNING_QUEUE_NAME = "warning_queue";
//声明
@Bean
public DirectExchange confirmExchange(){
// return new DirectExchange(CONFIRM_EXCHANGE_NAME);
return ExchangeBuilder.directExchange(CONFIRM_EXCHANGE_NAME).durable(true).
withArgument("alternate-exchange", BACKUP_EXCHANGE_NAME).build();
}
@Bean
public Queue confirmQueue(){
return QueueBuilder.durable(CONFIRM_QUEUE_NAME).build();
}
@Bean
public Binding queueBindingExchange(@Qualifier("confirmExchange") DirectExchange confirmExchange,
@Qualifier("confirmQueue") Queue confirmQueue){
return BindingBuilder.bind(confirmQueue).to(confirmExchange).with("key1");
}
//备份交换机相关声明
@Bean("backupExchange")
public FanoutExchange backupExchange(){
return new FanoutExchange(BACKUP_EXCHANGE_NAME);
}
@Bean
public Queue backupQueue(){
return QueueBuilder.durable(BACKUP_QUEUE_NAME).build();
}
@Bean
public Queue warningQueue(){
return QueueBuilder.durable(WARNING_QUEUE_NAME).build();
}
@Bean
public Binding backupQueueBindingBackupExchange(@Qualifier("backupQueue") Queue backupQueue,
@Qualifier("backupExchange") FanoutExchange backupExchange){
//因为是扇出类型的交换机,所以无需指定我们的 RoutingKey
return BindingBuilder.bind(backupQueue).to(backupExchange);
}
@Bean
public Binding warningQueueBindingBackupExchange(@Qualifier("warningQueue") Queue warningQueue,
@Qualifier("backupExchange") FanoutExchange backupExchange){
//因为是扇出类型的交换机,所以无需指定我们的 RoutingKey
return BindingBuilder.bind(warningQueue).to(backupExchange);
}
}
3️⃣ 报警消费者
package com.atguigu.rabbitmq.consumer;
import com.atguigu.rabbitmq.config.ConfirmConfig;
import lombok.extern.slf4j.Slf4j;
import org.springframework.amqp.core.Message;
import org.springframework.amqp.rabbit.annotation.RabbitListener;
import org.springframework.stereotype.Component;
/**
* @author Bonbons
* @version 1.0
*/
@Slf4j
@Component
public class WarningConsumer {
//接收消息
@RabbitListener(queues = ConfirmConfig.WARNING_QUEUE_NAME)
public void receiveWarningMsg(Message message){
log.info("报警发现不可路由的消息: {}", new String(message.getBody()));
}
}
- 在测试前,需要将我们创建好的 confirm.exchange 删除,因为本次使用备份交换机我们修改了这个交换机的属性
- 测试结果:报警消费者获取到了我们无法路由的消息,测试成功
- mandatory 参数与备份交换机可以一起使用的时候,如果两者同时开启,消息究竟何去何从?谁优先级高,经过上面结果显示答案是备份交换机优先级高
二、RabbitMQ 其他知识点
- 这部分是工作中可能涉及到的一些场景应用案例
2.1 幂等性
- 就是重复提交问题
🌔 1、什么是幂等性?
- 用户对于同一操作发起的一次请求或者多次请求的结果是一致的,不会因为多次点击而产生了副作用。
- 举个最简单的例子,那就是支付,用户购买商品后支付,支付扣款成功,但是返回结果的时候网络异常,此时钱已经扣了,用户再次点击按钮,此时会进行第二次扣款,返回结果成功,用户查询余额发现多扣钱了,流水记录也变成了两条。
- 在以前的单应用系统中,我们只需要把数据操作放入事务中即可,发生错误立即回滚,但是再响应客户端的时候也有可能出现网络中断或者异常等等
🌔 2、消息重复消费问题
- 消费者在消费 MQ 中的消息时,MQ 已把消息发送给消费者,消费者在给 MQ 返回 ack 时网络中断,故 MQ 未收到确认信息
- 该条消息会重新发给其他的消费者,或者在网络重连后再次发送给该消费者
- 但实际上该消费者已成功消费了该条消息,造成消费者消费了重复的消息。
🌔 3、那么如何解决上面这种消息重复消费的问题呢?
- MQ 消费者的幂等性的解决一般使用全局 ID 或者写个唯一标识
- 比如时间戳 或者 UUID 或者订单消费者消费 MQ 中的消息也可利用 MQ 的该 id 来判断,或者可按自己的规则生成一个全局唯一 id
- 每次消费消息时用该 id 先判断该消息是否已消费过
🌔 4、消费端的幂等性保障
- 在海量订单生成的业务高峰期,生产端有可能就会重复发生了消息,这时候消费端就要实现幂等性,这就意味着我们的消息永远不会被消费多次,即使我们收到了一样的消息。
- 业界主流的幂等性有两种操作:
- a.唯一 ID+指纹码机制,利用数据库主键去重
- b.利用 redis 的原子性去实现
🌔 5、如何使用 唯一 ID+指纹码机制 实现幂等性?
- 指纹码: 我们的一些规则或者时间戳加别的服务给到的唯一信息码
- 它并不一定是我们系统生成的,基本都是由我们的业务规则拼接而来,但是一定要保证唯一性
- 然后就利用查询语句进行判断这个 id 是否存在数据库中
- 优势 就是实现简单就一个拼接,然后查询判断是否重复
- 劣势 就是在高并发时,如果是单个数据库就会有写入性能瓶颈当然也可以采用分库分表提升性能,但也不是我们最推荐的方式
🌔 6、Redis 原子性 如何实现幂等性?
- 利用 redis 执行 setnx 命令,天然具有幂等性,从而实现不重复消费
2.2 优先级队列
🌔 1、使用场景
在我们系统中有一个订单催付的场景,我们的客户在天猫下的订单,淘宝会及时将订单推送给我们,如果在用户设定的时间内未付款那么就会给用户推送一条短信提醒,很简单的一个功能对吧,但是,tmall商家对我们来说,肯定是要分大客户和小客户的对吧,比如像苹果,小米这样大商家一年起码能给我们创造很大的利润,所以理应当然,他们的订单必须得到优先处理,而曾经我们的后端系统是使用 redis 来存放的定时轮询,大家都知道 redis 只能用 List 做一个简简单单的消息队列,并不能实现一个优先级的场景,所以订单量大了后采用 RabbitMQ 进行改造和优化,如果发现是大客户的订单给一个相对比较高的优先级,否则就是默认优先级
🌔 2、如何添加
- 优先队列的优先级排序:只有队列设置了优先级、消息也设置了优先级才能使用
(1)在控制台页面为队列添加优先级
(2)在代码中声明队列之前通过 map 集合参数为队列添加优先级
Map<String, Object> params = new HashMap();
params.put("x-max-priority", 10);
channel.queueDeclare("hello", true, false, false, params);
(3)在生产者发送前,通过参数为消息设置优先级
AMQP.BasicProperties properties = new AMQP.BasicProperties().builder().priority(5).build();
🌔 3、案例演示
1️⃣ 消息生产者
public class Producer {
private static final String QUEUE_NAME="hello";
public static void main(String[] args) throws Exception {
try (Channel channel = RabbitMqUtils.getChannel();) {
//给消息赋予一个 priority 属性
AMQP.BasicProperties properties = new
AMQP.BasicProperties().builder().priority(5).build();
for (int i = 1; i <11; i++) {
String message = "info"+i;
if(i==5){
channel.basicPublish("", QUEUE_NAME, properties, message.getBytes());
}else{
channel.basicPublish("", QUEUE_NAME, null, message.getBytes());
}
System.out.println("发送消息完成:" + message);
}
}
}
}
2️⃣ 消息消费者
public class Consumer {
private static final String QUEUE_NAME="hello";
public static void main(String[] args) throws Exception {
Channel channel = RabbitMqUtils.getChannel();
//设置队列的最大优先级 最大可以设置到 255 官网推荐 1-10 如果设置太高比较吃内存和 CPU
Map<String, Object> params = new HashMap();
params.put("x-max-priority", 10);
channel.queueDeclare(QUEUE_NAME, true, false, false, params);
System.out.println("消费者启动等待消费......");
DeliverCallback deliverCallback=(consumerTag, delivery)->{
String receivedMessage = new String(delivery.getBody());
System.out.println("接收到消息:"+receivedMessage);
};
channel.basicConsume(QUEUE_NAME,true,deliverCallback,(consumerTag)->{
System.out.println("消费者无法消费消息时调用,如队列被删除");
});
}
}
2.3 惰性队列
- 会把队列中的内容先存储到磁盘上,当消费者使用时先会读取到内存中 【使用在消费者宕机的场景】
🌔 1、使用场景
RabbitMQ 从 3.6.0 版本开始引入了惰性队列的概念。惰性队列会尽可能的将消息存入磁盘中,而在消费者消费到相应的消息时才会被加载到内存中,它的一个重要的设计目标是能够支持更长的队列,即支持更多的消息存储。当消费者由于各种各样的原因(比如消费者下线、宕机亦或者是由于维护而关闭等)而致使长时间内不能消费消息造成堆积时,惰性队列就很有必要了。
默认情况下,当生产者将消息发送到 RabbitMQ 的时候,队列中的消息会尽可能的存储在内存之中,这样可以更加快速的将消息发送给消费者。即使是持久化的消息,在被写入磁盘的同时也会在内存中驻留一份备份。当 RabbitMQ 需要释放内存的时候,会将内存中的消息换页至磁盘中,这个操作会耗费较长的时间,也会阻塞队列的操作,进而无法接收新的消息。虽然 RabbitMQ 的开发者们一直在升级相关的算法,但是效果始终不太理想,尤其是在消息量特别大的时候。
🌔 2、两种模式
- 队列具备两种模式:default 和 lazy。默认的为 default 模式,在 3.6.0 之前的版本无需做任何变更。
- lazy模式即为惰性队列的模式
- 可以通过调用 channel.queueDeclare 方法的时候在参数中设置
- 也可以通过Policy 的方式设置
- 如果一个队列同时使用这两种方式设置的话,那么 Policy 的方式具备更高的优先级。
- lazy模式即为惰性队列的模式
- 如果要通过声明的方式改变已有队列的模式的话,那么只能先删除队列,然后再重新声明一个新的。
- 在队列声明的时候可以通过“x-queue-mode”参数来设置队列的模式,取值为“default”和“lazy”
- 下面示例中演示了一个惰性队列的声明细节:
Map<String, Object> args = new HashMap<String, Object>(); args.put("x-queue-mode", "lazy"); channel.queueDeclare("myqueue", false, false, false, args);
- 下面示例中演示了一个惰性队列的声明细节:
🌔 3、内存开销对比:
- 在发送 1 百万条消息,每条消息大概占 1KB 的情况下,普通队列占用内存是 1.2GB,而惰性队列仅仅占用 1.5MB
三、RabbitMQ 集群
3.1 clustering
🌔 1、使用集群的原因?
- 最开始我们介绍了如何安装及运行 RabbitMQ 服务,不过这些是单机版的,无法满足目前真实应用的要求。
- 如果 RabbitMQ 服务器遇到内存崩溃、机器掉电或者主板故障等情况,该怎么办?
- 单台 RabbitMQ 服务器可以满足每秒 1000 条消息的吞吐量,那么如果应用需要 RabbitMQ 服务满足每秒 10 万条消息的吞吐量呢?
- 购买昂贵的服务器来增强单机 RabbitMQ 务的性能显得捉襟见肘
- 搭建一个 RabbitMQ 集群才是解决实际问题的关键
🌔 2、搭建集群的步骤
- 这部分内容因为配置问题我并没有实际操作,以下内容以VMware的三台CentOS虚拟机为例
1️⃣ 修改三台机器的主机名字
- 使用
vim /etc/hostname
指令,分别修改为 node1、node2、node3
2️⃣ 配置各个节点的 hosts 文件,让各个节点都能互相识别对方
- 下面的命令在三台虚拟机中都要执行一遍
vim /etc/hosts
指令编辑,然后输入下面的文件
10.211.55.74 node1
10.211.55.75 node2
10.211.55.76 node3
3️⃣ 以确保各个节点的 cookie 文件使用的是同一个值
- 在 node1 上执行远程操作命令
scp /var/lib/rabbitmq/.erlang.cookie root@node2:/var/lib/rabbitmq/.erlang.cookie
scp /var/lib/rabbitmq/.erlang.cookie root@node3:/var/lib/rabbitmq/.erlang.cookie
4️⃣ 启动 RabbitMQ 服务,顺带启动 Erlang 虚拟机和 RbbitMQ 应用服务(在三台节点上分别执行以下命令)
rabbitmq-server -detached
5️⃣ 在节点 2 执行
rabbitmqctl stop_app
(rabbitmqctl stop 会将 Erlang 虚拟机关闭,rabbitmqctl stop_app 只关闭 RabbitMQ 服务)
rabbitmqctl reset
rabbitmqctl join_cluster rabbit@node1
rabbitmqctl start_app(只启动应用服务)
6️⃣ 在节点 3 执行
rabbitmqctl stop_app
rabbitmqctl reset
rabbitmqctl join_cluster rabbit@node2
rabbitmqctl start_app
7️⃣ 查看集群状态
rabbitmqctl cluster_status
8️⃣ 重新设置用户
创建账号
rabbitmqctl add_user admin 123
设置用户角色
rabbitmqctl set_user_tags admin administrator
设置用户权限
rabbitmqctl set_permissions -p "/" admin ".*" ".*" ".*"
9️⃣ 解除集群节点(node2 和 node3 机器分别执行)
rabbitmqctl stop_app
rabbitmqctl reset
rabbitmqctl start_app
rabbitmqctl cluster_status
rabbitmqctl forget_cluster_node rabbit@node2(node1 机器上执行)
3.2 镜像队列
- 在集群情况下,某一台机器宕机,其中的消息就会丢失,通过镜像队列添加策略可以实现数据在其他结点备份【保证集群内有几个节点有这个数据】
🌔 1、使用镜像的原因?
如果 RabbitMQ 集群中只有一个 Broker 节点,那么该节点的失效将导致整体服务的临时性不可用,并且也可能会导致消息的丢失。
可以将所有消息都设置为持久化,并且对应队列的durable属性也设置为true,但是这样仍然无法避免由于缓存导致的问题:因为消息在发送之后和被写入磁盘井执行刷盘动作之间存在一个短暂却会产生问题的时间窗。通过 publisherconfirm 机制能够确保客户端知道哪些消息己经存入磁盘,尽管如此,一般不希望遇到因单点故障导致的服务不可用。
引入镜像队列(Mirror Queue) 的机制,可以将队列镜像到集群中的其他 Broker 节点之上,如果集群中的一个节点失效了,队列能自动地切换到镜像中的另一个节点上以保证服务的可用性。
🌔 2、搭建步骤:
1️⃣ 启动三台集群节点
2️⃣ 随便找一个节点添加 policy
3️⃣ 在 node1 上创建一个队列发送一条消息,队列存在镜像队列
4️⃣ 停掉 node1 之后发现 node2 成为镜像队列
5️⃣ 就算整个集群只剩下一台机器了依然能消费队列里面的消息 说明队列里面的消息被镜像队列传递到相应机器里面了
3.3 Haproxy+Keepalive 实现高可用负载均衡
🌔 1、整体架构图
🌔 2、Haproxy 实现负载均衡
- HAProxy 提供高可用性、负载均衡及基于 TCPHTTP 应用的代理,支持虚拟主机,它是免费、快速并且可靠的一种解决方案,包括 Twitter,Reddit,StackOverflow,GitHub 在内的多家知名互联网公司在使用
- HAProxy 实现了一种事件驱动、单一进程模型,此模型支持非常大的井发连接数。
- 扩展 nginx,lvs,haproxy 之间的区别: http://www.ha97.com/5646.html
🌔 3、搭建步骤
1️⃣ 下载 haproxy(在 node1 和 node2)
yum -y install haproxy
2️⃣ 修改 node1 和 node2 的 haproxy.cfg
vim /etc/haproxy/haproxy.cfg
3️⃣ 在两台节点启动 haproxy
haproxy -f /etc/haproxy/haproxy.cfg
ps -ef | grep haproxy
4️⃣ 访问地址
- http://10.211.55.71:8888/stats
🌔 4、Keepalived 实现双机(主备)热备
试想如果前面配置的 HAProxy 主机突然宕机或者网卡失效,那么虽然 RbbitMQ 集群没有任何故障但是对于外界的客户端来说所有的连接都会被断开结果将是灾难性的为了确保负载均衡服务的可靠性同样显得十分重要,这里就要引入 Keepalived 它能够通过自身健康检查、资源接管功能做高可用(双机热备),实现故障转移
🌔 5、Keeplived 的搭建步骤
1.下载 keepalived
yum -y install keepalived
2.节点 node1 配置文件
vim /etc/keepalived/keepalived.conf
把资料里面的 keepalived.conf 修改之后替换
3.节点 node2 配置文件
需要修改 global_defs 的 router_id,如:nodeB
其次要修改 vrrp_instance_VI 中 state 为"BACKUP";
最后要将 priority 设置为小于 100 的值
4.添加 haproxy_chk.sh
(为了防止 HAProxy 服务挂掉之后 Keepalived 还在正常工作而没有切换到 Backup 上,所以
这里需要编写一个脚本来检测 HAProxy 务的状态,当 HAProxy 服务挂掉之后该脚本会自动重启
HAProxy 的服务,如果不成功则关闭 Keepalived 服务,这样便可以切换到 Backup 继续工作)
vim /etc/keepalived/haproxy_chk.sh(可以直接上传文件)
修改权限 chmod 777 /etc/keepalived/haproxy_chk.sh
5.启动 keepalive 命令(node1 和 node2 启动)
systemctl start keepalived
6.观察 Keepalived 的日志
tail -f /var/log/messages -n 200
7.观察最新添加的 vip
ip add show
8.node1 模拟 keepalived 关闭状态
systemctl stop keepalived
9.使用 vip 地址来访问 rabbitmq 集群
3.4 Federation Exchange(联邦交换机)
🌔 1、使用它的原因?
(broker 北京),(broker 深圳)彼此之间相距甚远,网络延迟是一个不得不面对的问题。有一个在北京的业务(Client 北京) 需要连接(broker 北京),向其中的交换器 exchangeA 发送消息,此时的网络延迟很小,(Client 北京)可以迅速将消息发送至 exchangeA 中,就算在开启了 publisherconfirm 机制或者事务机制的情况下,也可以迅速收到确认信息。此时又有个在深圳的业务(Client 深圳)需要向 exchangeA 发送消息,那么(Client 深圳) (broker 北京)之间有很大的网络延迟,(Client 深圳) 将发送消息至 exchangeA 会经历一定的延迟,尤其是在开启了 publisherconfirm 机制或者事务机制的情况下,(Client 深圳) 会等待很长的延迟时间来接收(broker 北京)的确认信息,进而必然造成这条发送线程的性能降低,甚至造成一定程度上的阻塞。
将业务(Client 深圳)部署到北京的机房可以解决这个问题,但是如果(Client 深圳)调用的另些服务都部署在深圳,那么又会引发新的时延问题,总不见得将所有业务全部部署在一个机房,那么容灾又何以实现?这里使用 Federation 插件就可以很好地解决这个问题
🌔 2、搭建步骤
1️⃣ 需要保证每台节点单独运行
2️⃣ 在每台机器上开启 federation 相关插件
rabbitmq-plugins enable rabbitmq_federation
rabbitmq-plugins enable rabbitmq_federation_management
3️⃣ 原理图(先运行 consumer 在 node2 创建 fed_exchange)
4️⃣ 在 downstream(node2)配置 upstream(node1)
5️⃣ 添加 policy
6️⃣ 成功的前提
3.5 Federation Queue
🌔 1、使用它的原因
- 联邦队列可以在多个 Broker 节点(或者集群)之间为单个队列提供均衡负载的功能
- 一个联邦队列可以连接一个或者多个上游队列(upstream queue),并从这些上游队列中获取消息以满足本地消费者消费消息的需求
🌔 2、搭建步骤
1️⃣ 原理图
2️⃣ 添加 upstream 同上
3️⃣ 添加 policy
3.6 Shovel
🌔 1、使用它的原因?
- Federation 具备的数据转发功能类似,Shovel 够可靠、持续地从一个 Broker 中的队列(作为源端,即source)拉取数据并转发至另一个 Broker 中的交换器(作为目的端,即 destination)
- 作为源端的队列和作为目的端的交换器可以同时位于同一个 Broker,也可以位于不同的 Broker 上
- Shovel 可以翻译为"铲子",是一种比较形象的比喻,这个"铲子"可以将消息从一方"铲子"另一方
- Shovel 行为就像优秀的客户端应用程序能够负责连接源和目的地、负责消息的读写及负责连接失败问题的处理
🌔 2、搭建步骤
1️⃣ 开启插件(需要的机器都开启)
rabbitmq-plugins enable rabbitmq_shovel
rabbitmq-plugins enable rabbitmq_shovel_management
2️⃣ 原理图(在源头发送的消息直接回进入到目的地队列)
3️⃣ 添加 shovel 源和目的地