CINTA 作业七:CRT
1. 运用 CRT 求解:
x ≡ 8 ( m o d 11 ) x ≡ 3 ( m o d 19 ) x\equiv 8(\mod 11)\\ x\equiv 3(\mod 19) x≡8(mod11)x≡3(mod19)
解:
[
1
0
11
0
1
19
]
(1)
\left[ \begin{matrix}\tag{1} 1&0&11\\ 0&1&19 \end{matrix} \right]
[10011119](1)
[
0
1
19
2
−
1
3
]
(2)
\left[ \begin{matrix}\tag{2} 0&1&19\\ 2&-1&3 \end{matrix} \right]
[021−1193](2)
[
2
−
1
3
−
12
7
1
]
(3)
\left[ \begin{matrix}\tag{3} 2&-1&3\\ -12&7&1 \end{matrix} \right]
[2−12−1731](3)
- 求得:
{ p − 1 ≡ − 12 ( m o d 19 ) q − 1 ≡ 7 ( m o d 11 ) (4) \begin{cases} p^{-1}\equiv -12(\mod 19)\\ q^{-1}\equiv 7(\mod 11)\tag{4} \end{cases} {p−1≡−12(mod19)q−1≡7(mod11)(4) - 原式可由: ( a q q − 1 + b p p − 1 ) m o d p q = 41 (aqq^{-1}+bpp^{-1})\mod pq=41 (aqq−1+bpp−1)modpq=41
2. 运用 CRT 求解:
x ≡ 1 ( m o d 5 ) x ≡ 2 ( m o d 7 ) x ≡ 3 ( m o d 9 ) x ≡ 4 ( m o d 11 ) x\equiv 1(\mod 5)\\ x\equiv 2(\mod 7)\\ x\equiv 3(\mod 9)\\ x\equiv 4(\mod 11) x≡1(mod5)x≡2(mod7)x≡3(mod9)x≡4(mod11)
已知:
M
=
5
∗
7
∗
9
∗
11
=
3465
,
k
i
=
M
/
m
i
M=5*7*9*11=3465,k_i=M/m_i
M=5∗7∗9∗11=3465,ki=M/mi
那么:
x
≡
a
k
1
k
1
−
1
+
b
k
2
k
2
−
1
+
c
k
3
k
3
−
1
+
d
k
4
k
4
−
1
x\equiv ak_1k_1^{-1}+bk_2k_2^{-1}+ck_3k_3^{-1}+dk_4k_4^{-1}
x≡ak1k1−1+bk2k2−1+ck3k3−1+dk4k4−1
由中国剩余定理推广:
k
i
k
i
−
1
≡
1
(
m
o
d
m
i
)
k_ik_i^{-1}\equiv 1(\mod m_i)
kiki−1≡1(modmi)
{
a
∗
k
1
∗
k
1
−
1
≡
a
(
m
o
d
m
1
)
b
∗
k
2
∗
k
2
−
1
≡
b
(
m
o
d
m
2
)
c
∗
k
3
∗
k
3
−
1
≡
c
(
m
o
d
m
3
)
d
∗
k
4
∗
k
4
−
1
≡
d
(
m
o
d
m
4
)
\begin{cases} a*k_1*k_1^{-1}\equiv a(\mod m_1)\\ b*k_2*k_2^{-1}\equiv b(\mod m_2)\\ c*k_3*k_3^{-1}\equiv c(\mod m_3)\\ d*k_4*k_4^{-1}\equiv d(\mod m_4) \end{cases}
⎩⎪⎪⎪⎨⎪⎪⎪⎧a∗k1∗k1−1≡a(modm1)b∗k2∗k2−1≡b(modm2)c∗k3∗k3−1≡c(modm3)d∗k4∗k4−1≡d(modm4)
-
计算得:
{ k 1 − 1 = 2 k 2 − 1 = 3 k 3 − 1 = 4 k 4 − 1 = 8 \begin{cases} k_1^{-1}=2\\ k_2^{-1}=3\\ k_3^{-1}=4\\ k_4^{-1}=8 \end{cases} ⎩⎪⎪⎪⎨⎪⎪⎪⎧k1−1=2k2−1=3k3−1=4k4−1=8 -
结果为: ( 1 ∗ 693 ∗ 2 + 2 ∗ 495 ∗ 3 + 3 ∗ 385 ∗ 4 + 4 ∗ 315 ∗ 8 ) m o d 3465 = 1735 (1*693*2+2*495*3+3*385*4+4*315*8)\mod 3465=1735 (1∗693∗2+2∗495∗3+3∗385∗4+4∗315∗8)mod3465=1735
3. 手动计算 200 0 2019 ( m o d 221 ) 2000^{2019}(\mod 221) 20002019(mod221) ,不允许使用电脑或者其它电子设备。
已知:
221
=
13
×
17
221=13\times 17
221=13×17
那么:
Z
221
∗
\mathbb{Z}^*_{221}
Z221∗ 同构于
Z
13
∗
×
Z
17
∗
\mathbb{Z}^*_{13}\times\mathbb{Z}^*_{17}
Z13∗×Z17∗
所以:
2000
↔
(
−
2
,
−
6
)
2000\leftrightarrow(-2,-6)
2000↔(−2,−6)
因此原式转为:
200
0
2019
↔
(
(
−
2
)
2019
m
o
d
13
,
(
−
6
)
2019
m
o
d
17
)
2000^{2019}\leftrightarrow((-2)^{2019}\mod 13,(-6)^{2019}\mod 17)
20002019↔((−2)2019mod13,(−6)2019mod17)
又有欧拉定理:
200
0
2019
↔
(
(
−
2
)
3
m
o
d
13
,
(
−
6
)
3
m
o
d
17
)
=
(
5
,
5
)
2000^{2019}\leftrightarrow((-2)^3\mod 13,(-6)^3\mod 17)=(5,5)
20002019↔((−2)3mod13,(−6)3mod17)=(5,5)
结果为:
200
0
2019
↔
(
5
,
5
)
↔
5
2000^{2019}\leftrightarrow(5,5)\leftrightarrow5
20002019↔(5,5)↔5
9. 请使用第一同构定理证明定理 10.4 中定义的映射 ϕ \phi ϕ 的单射性。
原命题:
设
n
=
p
q
,
p
>
1
n=pq,p>1
n=pq,p>1 和
q
>
1
q>1
q>1 是两个互素的正整数。则
Z
n
≅
Z
p
×
Z
q
且
Z
n
∗
≅
Z
p
∗
×
Z
q
∗
\mathbb{Z}_n\cong\mathbb{Z}_p\times\mathbb{Z}_q 且 \mathbb{Z}_n^*\cong\mathbb{Z}_p^*\times\mathbb{Z}_q^*
Zn≅Zp×Zq且Zn∗≅Zp∗×Zq∗
定义运算
ϕ
(
x
)
=
(
[
x
m
o
d
p
]
,
[
x
m
o
d
q
]
)
\phi(x)=([x\mod p],[x\mod q])
ϕ(x)=([xmodp],[xmodq])
-
对于 Z n ≅ Z p × Z q \mathbb{Z}_n\cong\mathbb{Z}_p\times\mathbb{Z}_q Zn≅Zp×Zq
已知: Z \mathbb{Z} Z 的单位元为0
那么: Z n \mathbb{Z}_n Zn 的单位元也为0, Z p × Z q \mathbb{Z}_p\times\mathbb{Z}_q Zp×Zq 单位元为 ( 0 , 0 ) (0,0) (0,0)
而且: K = ker ( ϕ ) = { 0 } \mathbb{K}=\ker(\phi)=\{0\} K=ker(ϕ)={0} 满足 K \mathbb{K} K 为 Z n \mathbb{Z}_n Zn 的正规子群
又因: ∣ K ∣ = 1 |\mathbb{K}|=1 ∣K∣=1 则: o r d ( Z n / K ) = ∣ Z ∣ ord(\mathbb{Z}_n/\mathbb{K})=|\mathbb{Z}| ord(Zn/K)=∣Z∣
得:映射 Φ : Z n ↦ Z n / K 为 Φ ( z ) = z K , ∀ z ∈ Z n \Phi:\mathbb{Z}_n\mapsto\mathbb{Z}_n/\mathbb{K} 为 \Phi(z)=z\mathbb{K},\forall z\in\mathbb{Z}_n Φ:Zn↦Zn/K为Φ(z)=zK,∀z∈Zn
所以: Φ : Z n ↦ Z n / K \Phi:\mathbb{Z}_n\mapsto\mathbb{Z}_n/\mathbb{K} Φ:Zn↦Zn/K 为标准同态,至少为一单射
又知: ϕ ( a + b ) = ϕ ( a ) + ϕ ( b ) , ∀ a , b ∈ Z n \phi(a+b)=\phi(a)+\phi(b),\forall a,b\in\mathbb{Z}_n ϕ(a+b)=ϕ(a)+ϕ(b),∀a,b∈Zn 为同态映射
所以:据第一同构定理,存在唯一同构映射 η : Z n / K ↦ ϕ ( Z n ) \eta: \mathbb{Z}_n/\mathbb{K}\mapsto\phi(\mathbb{Z}_n) η:Zn/K↦ϕ(Zn) 使得 ϕ = η Φ \phi=\eta\Phi ϕ=ηΦ
那么: ϕ \phi ϕ 至少为一单射
-
对于 Z n ∗ ≅ Z p ∗ × Z q ∗ \mathbb{Z}_n^*\cong\mathbb{Z}_p^*\times\mathbb{Z}_q^* Zn∗≅Zp∗×Zq∗
同理:我们可以找到 Z n ∗ \mathbb{Z}_n^* Zn∗ 单位元1
而且:可以得到 Z p ∗ × Z q ∗ \mathbb{Z}_p^*\times\mathbb{Z}_q^* Zp∗×Zq∗ 单位元 ( 1 , 1 ) (1,1) (1,1)
所以:同样可以得到 ϕ : Z n ∗ ↦ Z p ∗ × Z q ∗ \phi:\mathbb{Z}_n^*\mapsto\mathbb{Z}_p^*\times\mathbb{Z}_q^* ϕ:Zn∗↦Zp∗×Zq∗ 为一单射
10. 完成定理 10.4 的证明,即证明 Z n ∗ \mathbb{Z}_n^* Zn∗ 与 Z p ∗ × Z q ∗ \mathbb{Z}_p^*\times\mathbb{Z}_q^* Zp∗×Zq∗ 同构。
已知:
n
=
p
q
,
gcd
(
p
,
q
)
=
1
n=pq,\gcd(p,q)=1
n=pq,gcd(p,q)=1
要证明:
Z
n
∗
\mathbb{Z}_n^*
Zn∗ 与
Z
p
∗
×
Z
q
∗
\mathbb{Z}_p^*\times\mathbb{Z}_q^*
Zp∗×Zq∗ 同构
即证明:
Z
n
∗
↦
Z
p
∗
×
Z
q
∗
\mathbb{Z}_n^*\mapsto\mathbb{Z}_p^*\times\mathbb{Z}_q^*
Zn∗↦Zp∗×Zq∗ 为双射
-
单射:
设定运算 ϕ : Z n ∗ ↦ Z p ∗ × Z q ∗ \phi: \mathbb{Z}_n^*\mapsto\mathbb{Z}_p^*\times\mathbb{Z}_q^* ϕ:Zn∗↦Zp∗×Zq∗ 为:
ϕ ( x ) = ( [ x m o d p ] , [ x m o d q ] ) \phi(x)=([x\mod p],[x\mod q]) ϕ(x)=([xmodp],[xmodq])
那么, ∀ a , b ∈ Z n ∗ \forall a,b\in\mathbb{Z}_n^* ∀a,b∈Zn∗,有:
ϕ ( a × b ) = ( [ a × b m o d p ] , [ b × b m o d q ] ) = ( [ ( a m o d p ) × ( b m o d p ) m o d p ] , [ ( a m o d q ) × ( b m o d q ) m o d q ] ) = ( a m o d p , a m o d q ) × ( b m o d q , b m o d q ) = ϕ ( a ) × ϕ ( b ) \phi(a\times b)=([a\times b\mod p],[b\times b\mod q])\\ =([(a\mod p)\times(b\mod p)\mod p],[(a\mod q)\times(b\mod q)\mod q])\\ =(a\mod p,a\mod q)\times(b\mod q,b\mod q)\\ =\phi(a)\times\phi(b) ϕ(a×b)=([a×bmodp],[b×bmodq])=([(amodp)×(bmodp)modp],[(amodq)×(bmodq)modq])=(amodp,amodq)×(bmodq,bmodq)=ϕ(a)×ϕ(b)
-
满射:
据中国剩余定理:
∀ a ∈ Z p ∗ , b ∈ Z q ∗ \forall a\in\mathbb{Z}_p^*,b\in\mathbb{Z}_q^* ∀a∈Zp∗,b∈Zq∗
存在唯一解 x , ( 0 ≤ x ≤ n ) x,(0\leq x\leq n) x,(0≤x≤n) 使得:
x ≡ a ( m o d p ) x ≡ b ( m o d q ) x\equiv a(\mod p)\\ x\equiv b(\mod q) x≡a(modp)x≡b(modq)
因此: a , b a,b a,b 遍布上述群,满足满射条件