CINTA 第七章

CINTA 作业七:CRT

1. 运用 CRT 求解:

x ≡ 8 ( m o d    11 ) x ≡ 3 ( m o d    19 ) x\equiv 8(\mod 11)\\ x\equiv 3(\mod 19) x8(mod11)x3(mod19)

解:
[ 1 0 11 0 1 19 ] (1) \left[ \begin{matrix}\tag{1} 1&0&11\\ 0&1&19 \end{matrix} \right] [10011119](1)
[ 0 1 19 2 − 1 3 ] (2) \left[ \begin{matrix}\tag{2} 0&1&19\\ 2&-1&3 \end{matrix} \right] [0211193](2)
[ 2 − 1 3 − 12 7 1 ] (3) \left[ \begin{matrix}\tag{3} 2&-1&3\\ -12&7&1 \end{matrix} \right] [2121731](3)

  • 求得:
    { p − 1 ≡ − 12 ( m o d    19 ) q − 1 ≡ 7 ( m o d    11 ) (4) \begin{cases} p^{-1}\equiv -12(\mod 19)\\ q^{-1}\equiv 7(\mod 11)\tag{4} \end{cases} {p112(mod19)q17(mod11)(4)
  • 原式可由: ( a q q − 1 + b p p − 1 ) m o d    p q = 41 (aqq^{-1}+bpp^{-1})\mod pq=41 (aqq1+bpp1)modpq=41
2. 运用 CRT 求解:

x ≡ 1 ( m o d    5 ) x ≡ 2 ( m o d    7 ) x ≡ 3 ( m o d    9 ) x ≡ 4 ( m o d    11 ) x\equiv 1(\mod 5)\\ x\equiv 2(\mod 7)\\ x\equiv 3(\mod 9)\\ x\equiv 4(\mod 11) x1(mod5)x2(mod7)x3(mod9)x4(mod11)

已知: M = 5 ∗ 7 ∗ 9 ∗ 11 = 3465 , k i = M / m i M=5*7*9*11=3465,k_i=M/m_i M=57911=3465,ki=M/mi
那么: x ≡ a k 1 k 1 − 1 + b k 2 k 2 − 1 + c k 3 k 3 − 1 + d k 4 k 4 − 1 x\equiv ak_1k_1^{-1}+bk_2k_2^{-1}+ck_3k_3^{-1}+dk_4k_4^{-1} xak1k11+bk2k21+ck3k31+dk4k41
由中国剩余定理推广: k i k i − 1 ≡ 1 ( m o d    m i ) k_ik_i^{-1}\equiv 1(\mod m_i) kiki11(modmi)
{ a ∗ k 1 ∗ k 1 − 1 ≡ a ( m o d    m 1 ) b ∗ k 2 ∗ k 2 − 1 ≡ b ( m o d    m 2 ) c ∗ k 3 ∗ k 3 − 1 ≡ c ( m o d    m 3 ) d ∗ k 4 ∗ k 4 − 1 ≡ d ( m o d    m 4 ) \begin{cases} a*k_1*k_1^{-1}\equiv a(\mod m_1)\\ b*k_2*k_2^{-1}\equiv b(\mod m_2)\\ c*k_3*k_3^{-1}\equiv c(\mod m_3)\\ d*k_4*k_4^{-1}\equiv d(\mod m_4) \end{cases} ak1k11a(modm1)bk2k21b(modm2)ck3k31c(modm3)dk4k41d(modm4)

  • 计算得:
    { k 1 − 1 = 2 k 2 − 1 = 3 k 3 − 1 = 4 k 4 − 1 = 8 \begin{cases} k_1^{-1}=2\\ k_2^{-1}=3\\ k_3^{-1}=4\\ k_4^{-1}=8 \end{cases} k11=2k21=3k31=4k41=8

  • 结果为: ( 1 ∗ 693 ∗ 2 + 2 ∗ 495 ∗ 3 + 3 ∗ 385 ∗ 4 + 4 ∗ 315 ∗ 8 ) m o d    3465 = 1735 (1*693*2+2*495*3+3*385*4+4*315*8)\mod 3465=1735 (16932+24953+33854+43158)mod3465=1735

3. 手动计算 200 0 2019 ( m o d    221 ) 2000^{2019}(\mod 221) 20002019(mod221) ,不允许使用电脑或者其它电子设备。

已知: 221 = 13 × 17 221=13\times 17 221=13×17
那么: Z 221 ∗ \mathbb{Z}^*_{221} Z221 同构于 Z 13 ∗ × Z 17 ∗ \mathbb{Z}^*_{13}\times\mathbb{Z}^*_{17} Z13×Z17
所以: 2000 ↔ ( − 2 , − 6 ) 2000\leftrightarrow(-2,-6) 2000(2,6)
因此原式转为: 200 0 2019 ↔ ( ( − 2 ) 2019 m o d    13 , ( − 6 ) 2019 m o d    17 ) 2000^{2019}\leftrightarrow((-2)^{2019}\mod 13,(-6)^{2019}\mod 17) 20002019((2)2019mod13,(6)2019mod17)
又有欧拉定理: 200 0 2019 ↔ ( ( − 2 ) 3 m o d    13 , ( − 6 ) 3 m o d    17 ) = ( 5 , 5 ) 2000^{2019}\leftrightarrow((-2)^3\mod 13,(-6)^3\mod 17)=(5,5) 20002019((2)3mod13,(6)3mod17)=(5,5)
结果为: 200 0 2019 ↔ ( 5 , 5 ) ↔ 5 2000^{2019}\leftrightarrow(5,5)\leftrightarrow5 20002019(5,5)5

9. 请使用第一同构定理证明定理 10.4 中定义的映射 ϕ \phi ϕ 的单射性。

原命题:
n = p q , p > 1 n=pq,p>1 n=pq,p>1 q > 1 q>1 q>1 是两个互素的正整数。则
Z n ≅ Z p × Z q 且 Z n ∗ ≅ Z p ∗ × Z q ∗ \mathbb{Z}_n\cong\mathbb{Z}_p\times\mathbb{Z}_q 且 \mathbb{Z}_n^*\cong\mathbb{Z}_p^*\times\mathbb{Z}_q^* ZnZp×ZqZnZp×Zq
定义运算 ϕ ( x ) = ( [ x m o d    p ] , [ x m o d    q ] ) \phi(x)=([x\mod p],[x\mod q]) ϕ(x)=([xmodp],[xmodq])

  • 对于 Z n ≅ Z p × Z q \mathbb{Z}_n\cong\mathbb{Z}_p\times\mathbb{Z}_q ZnZp×Zq
    已知: Z \mathbb{Z} Z 的单位元为0
    那么: Z n \mathbb{Z}_n Zn 的单位元也为0, Z p × Z q \mathbb{Z}_p\times\mathbb{Z}_q Zp×Zq 单位元为 ( 0 , 0 ) (0,0) (0,0)
    而且: K = ker ⁡ ( ϕ ) = { 0 } \mathbb{K}=\ker(\phi)=\{0\} K=ker(ϕ)={0} 满足 K \mathbb{K} K Z n \mathbb{Z}_n Zn 的正规子群
    又因: ∣ K ∣ = 1 |\mathbb{K}|=1 K=1 则: o r d ( Z n / K ) = ∣ Z ∣ ord(\mathbb{Z}_n/\mathbb{K})=|\mathbb{Z}| ord(Zn/K)=Z
    得:映射 Φ : Z n ↦ Z n / K 为 Φ ( z ) = z K , ∀ z ∈ Z n \Phi:\mathbb{Z}_n\mapsto\mathbb{Z}_n/\mathbb{K} 为 \Phi(z)=z\mathbb{K},\forall z\in\mathbb{Z}_n Φ:ZnZn/KΦ(z)=zK,zZn
    所以: Φ : Z n ↦ Z n / K \Phi:\mathbb{Z}_n\mapsto\mathbb{Z}_n/\mathbb{K} Φ:ZnZn/K 为标准同态,至少为一单射
    又知: ϕ ( a + b ) = ϕ ( a ) + ϕ ( b ) , ∀ a , b ∈ Z n \phi(a+b)=\phi(a)+\phi(b),\forall a,b\in\mathbb{Z}_n ϕ(a+b)=ϕ(a)+ϕ(b),a,bZn 为同态映射
    所以:据第一同构定理,存在唯一同构映射 η : Z n / K ↦ ϕ ( Z n ) \eta: \mathbb{Z}_n/\mathbb{K}\mapsto\phi(\mathbb{Z}_n) η:Zn/Kϕ(Zn) 使得 ϕ = η Φ \phi=\eta\Phi ϕ=ηΦ
    那么: ϕ \phi ϕ 至少为一单射

  • 对于 Z n ∗ ≅ Z p ∗ × Z q ∗ \mathbb{Z}_n^*\cong\mathbb{Z}_p^*\times\mathbb{Z}_q^* ZnZp×Zq
    同理:我们可以找到 Z n ∗ \mathbb{Z}_n^* Zn 单位元1
    而且:可以得到 Z p ∗ × Z q ∗ \mathbb{Z}_p^*\times\mathbb{Z}_q^* Zp×Zq 单位元 ( 1 , 1 ) (1,1) (1,1)
    所以:同样可以得到 ϕ : Z n ∗ ↦ Z p ∗ × Z q ∗ \phi:\mathbb{Z}_n^*\mapsto\mathbb{Z}_p^*\times\mathbb{Z}_q^* ϕ:ZnZp×Zq 为一单射

10. 完成定理 10.4 的证明,即证明 Z n ∗ \mathbb{Z}_n^* Zn Z p ∗ × Z q ∗ \mathbb{Z}_p^*\times\mathbb{Z}_q^* Zp×Zq 同构。

已知: n = p q , gcd ⁡ ( p , q ) = 1 n=pq,\gcd(p,q)=1 n=pq,gcd(p,q)=1
要证明: Z n ∗ \mathbb{Z}_n^* Zn Z p ∗ × Z q ∗ \mathbb{Z}_p^*\times\mathbb{Z}_q^* Zp×Zq 同构
即证明: Z n ∗ ↦ Z p ∗ × Z q ∗ \mathbb{Z}_n^*\mapsto\mathbb{Z}_p^*\times\mathbb{Z}_q^* ZnZp×Zq 为双射

  • 单射:
    设定运算 ϕ : Z n ∗ ↦ Z p ∗ × Z q ∗ \phi: \mathbb{Z}_n^*\mapsto\mathbb{Z}_p^*\times\mathbb{Z}_q^* ϕ:ZnZp×Zq 为:
    ϕ ( x ) = ( [ x m o d    p ] , [ x m o d    q ] ) \phi(x)=([x\mod p],[x\mod q]) ϕ(x)=([xmodp],[xmodq])
    那么, ∀ a , b ∈ Z n ∗ \forall a,b\in\mathbb{Z}_n^* a,bZn,有:
    ϕ ( a × b ) = ( [ a × b m o d    p ] , [ b × b m o d    q ] ) = ( [ ( a m o d    p ) × ( b m o d    p ) m o d    p ] , [ ( a m o d    q ) × ( b m o d    q ) m o d    q ] ) = ( a m o d    p , a m o d    q ) × ( b m o d    q , b m o d    q ) = ϕ ( a ) × ϕ ( b ) \phi(a\times b)=([a\times b\mod p],[b\times b\mod q])\\ =([(a\mod p)\times(b\mod p)\mod p],[(a\mod q)\times(b\mod q)\mod q])\\ =(a\mod p,a\mod q)\times(b\mod q,b\mod q)\\ =\phi(a)\times\phi(b) ϕ(a×b)=([a×bmodp],[b×bmodq])=([(amodp)×(bmodp)modp],[(amodq)×(bmodq)modq])=(amodp,amodq)×(bmodq,bmodq)=ϕ(a)×ϕ(b)

  • 满射:
    据中国剩余定理:
    ∀ a ∈ Z p ∗ , b ∈ Z q ∗ \forall a\in\mathbb{Z}_p^*,b\in\mathbb{Z}_q^* aZp,bZq
    存在唯一解 x , ( 0 ≤ x ≤ n ) x,(0\leq x\leq n) x,(0xn) 使得:
    x ≡ a ( m o d    p ) x ≡ b ( m o d    q ) x\equiv a(\mod p)\\ x\equiv b(\mod q) xa(modp)xb(modq)
    因此: a , b a,b a,b 遍布上述群,满足满射条件

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值