第八章课后题

CHITA 作业八

  1. p p p 是奇素数,请证明 Z p ∗ \Z_p^* Zp 的所有生成元都是模 p p p 的二次非剩余。
    假设存在 Z p ∗ Z_p^* Zp 的生成元为模 p p p 的二次剩余,并设其为 m m m
    那么有: ∃ x ∈ Z , m ≡ x 2 ( m o d    p ) \exist x\in\mathbb{Z},m\equiv x^2(\mod p) xZ,mx2(modp)
    又因: m m m Z p ∗ Z_p^* Zp 的生成元
    所以: m p − 1 ≡ 1 ( m o d    p ) m^{p-1}\equiv 1(\mod p) mp11(modp)
    已知: p p p 为奇素数, p − 1 p-1 p1 为偶数
    因此: m p − 1 2 ∈ Z m^{\frac{p-1}{2}}\in\mathbb{Z} m2p1Z
    推至: ( m p − 1 2 − 1 ) ( m p − 1 2 + 1 ) ≡ 0 ( m o d    p ) (m^{\frac{p-1}{2}}-1)(m^{\frac{p-1}{2}}+1)\equiv 0(\mod p) (m2p11)(m2p1+1)0(modp)
    但是: m m m Z p ∗ Z_p^* Zp 的生成元
    所以: ∀ n ∈ Z p ∗ \forall n\in \Z_p^* nZp,仅有 n = p − 1 n=p-1 n=p1 使 m p − 1 ≡ 1 ( m o d    p ) m^{p-1}\equiv 1(\mod p) mp11(modp)
    仅有: m p − 1 2 + 1 ≡ 0 ( m o d    p ) m^{\frac{p-1}{2}}+1\equiv 0(\mod p) m2p1+10(modp)
    即: m p − 1 2 ≡ − 1 ( m o d    p ) m^{\frac{p-1}{2}}\equiv -1(\mod p) m2p11(modp)
    据欧拉准则: m p − 1 2 ≡ ( a p ) ≡ − 1 ( m o d    p ) m^{\frac{p-1}{2}}\equiv(\frac{a}{p})\equiv -1(\mod p) m2p1(pa)1(modp)
    那么: m m mQNR 与已知相矛盾
    因此:假设不成立

  2. 使用抽象代数的语言重新证明欧拉准则。
    欧拉准则:
    p p p 是奇素数, a ∈ Z a\in\Z aZ,且 gcd ⁡ ( a , p ) = 1 \gcd(a,p)=1 gcd(a,p)=1。那么:
    ( a p ) ≡ a p − 1 2 ( m o d    p ) (\frac{a}{p})\equiv a^{\frac{p-1}{2}}(\mod p) (pa)a2p1(modp)
    充分性:
    a ≡ x 2 ( m o d    p ) a\equiv x^2(\mod p) ax2(modp)
    a p − 1 2 ≡ x p − 1 ≡ 1 ( m o d    p ) a^{\frac{p-1}{2}}\equiv x^{p-1}\equiv 1(\mod p) a2p1xp11(modp)
    必要性:
    g g g 是模 p p p 的一个原根且 a = g k a=g^k a=gk。那么: a p − 1 2 ≡ g k 2 ( p − 1 ) ≡ 1 ( m o d    p ) a^{\frac{p-1}{2}}\equiv g^{\frac{k}{2}(p-1)}\equiv 1(\mod p) a2p1g2k(p1)1(modp)
    所以: k 2 ( p − 1 ) \frac{k}{2}(p-1) 2k(p1) 必然是 ϕ ( p ) = p − 1 \phi(p)=p-1 ϕ(p)=p1 的倍数
    k k k 为偶数,则 x = g k 2 x=g^{\frac{k}{2}} x=g2k
    即可使 a ≡ x 2 ( m o d    p ) a\equiv x^2(\mod p) ax2(modp) 成立

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值