1.概念
复杂度在校招中会出现 所以说还是挺重要的。
例1、
// 计算Func2的时间复杂度?
void Func2(int N)
{
int count = 0;
for (int k = 0; k < 2 * N ; ++ k)
{
++count;
}
int M = 10;
while (M--)
{
++count;
}
printf("%d\n", count);
}
其实就是数执行的次数 大概就是 2*N+10 所以是O(N). 但是这里可以参考一下大O的渐进表示法
大O的渐进表示法
大O符号(Big O notation):是用于描述函数渐进行为的数学符号。
推导大O阶方法:
1、用常数1取代运行时间中的所有加法常数。
2、在修改后的运行次数函数中,只保留最高阶项。
3、如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。
使用大O的渐进表示法以后,Func1的时间复杂度为:
N = 10 F(N) = 100
N = 100 F(N) = 10000
N = 1000 F(N) = 1000000
通过上面我们会发现大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数。
另外有些算法的时间复杂度存在最好、平均和最坏情况:
最坏情况:任意输入规模的最大运行次数(上界)
平均情况:任意输入规模的期望运行次数
最好情况:任意输入规模的最小运行次数(下界)
例如:在一个长度为N数组中搜索一个数据x
最好情况:1次找到
最坏情况:N次找到
平均情况:N/2次找到
在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N)
再来看一题:
void Func3(int N, int M)
{
int count = 0;
for (int k = 0; k < M; ++ k)
{
++count;
}
for (int k = 0; k < N ; ++ k)
{
++count;
}
printf("%d\n", count);
}
所以是:O(M+N)
再来一题:
// 计算strchr的时间复杂度?
const char * strchr ( const char * str, int character );
最好情况:1次找到
最坏情况:N次找到
平均情况:N/2次找到
所以要用最坏的时间复杂度O(N);
在找时间复杂度的时候不能看他的循环次数,一定要看算法思想来进行计算。
2.空间复杂度 时间复杂度是积累的,空间复杂度是不积累的
例题一、
例题2、
例题3、
如有错误 请指出谢谢!