16.时间复杂度和空间复杂度

1.概念

复杂度在校招中会出现 所以说还是挺重要的。

例1、

// 计算Func2的时间复杂度?
void Func2(int N)
{
 int count = 0;
 for (int k = 0; k < 2 * N ; ++ k)
 {
 ++count;
 }
 
 int M = 10;
 while (M--)
 {
 ++count;
 }
 
 printf("%d\n", count);
}

其实就是数执行的次数 大概就是 2*N+10  所以是O(N).   但是这里可以参考一下大O的渐进表示法

大O的渐进表示法 
大O符号(Big O notation):是用于描述函数渐进行为的数学符号。 
推导大O阶方法: 
1、用常数1取代运行时间中的所有加法常数。
2、在修改后的运行次数函数中,只保留最高阶项。
3、如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。
使用大O的渐进表示法以后,Func1的时间复杂度为:
N = 10 F(N) = 100
N = 100 F(N) = 10000
N = 1000 F(N) = 1000000
通过上面我们会发现大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数。
另外有些算法的时间复杂度存在最好、平均和最坏情况:
 最坏情况:任意输入规模的最大运行次数(上界)
 平均情况:任意输入规模的期望运行次数
 最好情况:任意输入规模的最小运行次数(下界)
例如:在一个长度为N数组中搜索一个数据x
 最好情况:1次找到
 最坏情况:N次找到
 平均情况:N/2次找到
在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N)

再来看一题:
void Func3(int N, int M)
{
 int count = 0;
 for (int k = 0; k < M; ++ k)
 {
 ++count;
 }
 
 for (int k = 0; k < N ; ++ k)
 {
 ++count;
 }
 printf("%d\n", count);
}
所以是:O(M+N)   

再来一题:

// 计算strchr的时间复杂度?
const char * strchr ( const char * str, int character );
最好情况:1次找到
 最坏情况:N次找到
 平均情况:N/2次找到

所以要用最坏的时间复杂度O(N);

在找时间复杂度的时候不能看他的循环次数,一定要看算法思想来进行计算。

2.空间复杂度       时间复杂度是积累的,空间复杂度是不积累的

 例题一、

 

 例题2、

 例题3、

 如有错误  请指出谢谢!

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值