第四章 数学知识 (二)(欧拉函数、快速幂、扩展欧几里得、中国剩余定理)

一、欧拉函数(1~n中有多少个数和n互质)

(一) 1~n 中和n互质的数

        1、互质数:公约数为1的两个整数。

        2、当n为6的时候:

        3、容斥原理公式

                                                 

           

                                 

        4、定义法求某一个数的欧拉函数

#include<bits/stdc++.h>
//873 欧拉函数用公式定义法求某个数的欧拉函数
using namespace std;
int n;
int main()
{
    cin>>n;
    while(n--)
    {
        int a;
        cin>>a;
        int res=a;
        for(int i=2;i<=a/i;i++)//质数分解
        {
           if(a%i==0)
           {
               //根据公式(1-1/i)变形
               res=res/i*(i-1);
               while(a%i==0)a/=i;
           }
        }
        if(a>1)res=res/a*(a-1);
        cout<<a<<endl;
    }
}

            5、筛法求欧拉函数,求1-n中某一个数的欧拉函数

                      求1~n中欧拉函数的和。质数的欧拉函数为n-1。

                      利用线性筛法,每次遍历到的st为false的数(质数)可以直接算出来欧拉函数;在遍  历之前的所有素数筛掉合数的时候,

#include<bits/stdc++.h>
//874 筛法求欧拉函数 求1-n的欧拉函数的和
using namespace std;
typedef long long LL;
const int N=1e6+10;
int prime[N],phi[N],idx,st[N];//分别记录素数、欧拉函数、是否被筛选掉
LL  get_eulers(int n)
{
    //从2开始算的
    phi[1]=1;
    //这里i不是数组的下标是真正遍历到的数
    for(int i=2;i<=n;i++)
    {
        //素数
        if(!st[i])phi[i]=i-1,prime[idx++]=i;
        for(int j=0;prime[j]<=n/i;j++)
        {
            st[i*prime[j]]=true;
            if(i%prime[j]==0)
            {
                //pj是i的最小质因数,所以欧拉函数的结果只乘pj即可
                phi[i*prime[j]]=prime[j]*phi[i];
                break;
            }
           //如果不是需要乘以pj*(1-1/pj)
           phi[i*prime[j]]=phi[i]*(prime[j]-1);
        }
    }
    LL res=0;
    for(int i=0;i<=n;i++)res+=phi[i];
    return res;
}
int main()
{
   int n;
   cin>>n;
   cout<<get_eulers(n);
   return 0;
}

(二) 欧拉定理

当n和p互质的时候(费马定理)

(可证)p mod n(p除n的余数)与n互质。若此结论成立,则也有 pi ≡ xj(mod n)。

二、快速幂(O(log k)快速求出a^k mod p)

(一)快速幂基础算法实现

1、求法:将k分解为多个 (2^x1+……)相加的结果。只需要计算以a为底 2^xi次方为指数的值的乘积。  

计算单个的时候,每一个都是上一个的平方。

4^5举例:要知道存在一个对应的等价关系:将k分解为二进制相加的形式,目的就是为了转换为以a为底的数的乘法,累计得到结果。每次循环都更新a。

                                    

快速幂计算

#include<bits/stdc++.h>
//875 快速幂
using namespace std;
typedef long long LL;
int qmi(int a,int k,int p)
{
    int res=1;
    while(k)
    {
       //注意判断某个数的二进制最后一位的值的方法
       if(k&1)res=(LL)res*a%p;
       k>>=1;
       a=(LL)a*a%p;
    }
    return res;
}
int main()
{
    int n;
    cin>>n;
    while(n--)
    {
        int a,k,p;
        cin>>a>>k>>p;

        cout<<qmi(a,k,p)<<endl;
    }
}

(二)、快速幂求逆元(求逆元可以转化为求快速幂)

 如果b可以整除a,整除后的结果可以找到一个x使得a*x在mod m的情况下相同。x为b的模m逆元。

也就是可以把除以b转换为乘以b的逆元的情况。

                                

                             

 转化为求下列式子的x的值。

                          

根据费马小定理(若b和p互质)

                               

无解的情况:b是p的倍数的时候无解

#include<bits/stdc++.h>
//876 快速幂求逆元
using namespace std;
typedef long long LL;
int qmi(int a,int k,int p)
{
    int res=1;
    while(k)
    {
       //注意判断某个数的二进制最后一位的值的方法
       if(k&1)res=(LL)res*a%p;
       k>>=1;
       a=(LL)a*a%p;
    }
    return res;
}
int main()
{
    int n;
    cin>>n;
    while(n--)
    {
        int b,p;
        cin>>b>>p;
        int res=qmi(b,p-2,p);
        //注意判断是否有结果的条件
        if(b%p)cout<<res<<endl;
        else puts("impossible");
    }
}

三、扩展欧几里得算法

(一)裴蜀定理

(a,b)为ab的最大公约数。

由于ab凑出来的数一定是最大公约数的倍数。一定可以凑出这个最大公约数

877求xy(x,y)是不唯一的。

扩展欧几里得求解xy。还是递归的思想,如果b==0,最大公因数为a,x=1,y=0;结束即可;

递归就要明白两层之间的关系,与欧几里得算法类似,ax+by=gcd 的下一层是bx1+a%b y1=gcd;我们先得到的x1和y1,然后用找x1 y1和x y的关系,化简上面的式子 得到 ay1+b(x1-(a/b)*y1)=gcd

得到两层之间的关系。

#include<bits/stdc++.h>
//877 扩展欧几里得算法求xy
using namespace std;
typedef long long LL;
int exgcd(int a,int b,int &x,int &y)
{
   if(!b)//递归结束标志
   {
      x=1,y=0;
      return a;
   }
   int d=exgcd(b,a%b,x,y);//交换的意思是上一层的x1y1导到了这一层
   //会变成yx,此时x已经更新到位,并进一步更新y。
   
   int t=x;
   x=y;
   y=t;
   y-=(a/b)*x;
}
int main()
{
    int n,x,y;
    cin>>n;
    while(n--)
    {
        int a,b;
        cin>>a>>b;
        exgcd(a,b,x,y);
        cout<<x<<" "<<y;
    }
}

(二)扩欧应用:求解线性同余方程

知道 a、b 、m求解x。

只要b是a和m的最大公约数的倍数就一定有解。

先按照结果为最大公约数算,如果b不是最大公约数的倍数,就无解,

#include<bits/stdc++.h>
//878 线性同余方程
using namespace std;
typedef long long LL;
int exgcd(int a,int b,int &x,int &y)
{
   if(!b)//递归结束标志
   {
      x=1,y=0;
      return a;
   }
   int d=exgcd(b,a%b,x,y);//交换的意思是上一层的x1y1导到了这一层
   //会变成yx,此时x已经更新到位,并进一步更新y。

   int t=x;
   x=y;
   y=t;
   y-=(a/b)*x;
   return d;
}
int main()
{
    int n,x,y;
    cin>>n;
    while(n--)
    {
        int a,b,m;
        cin>>a>>b>>m;
        int x,y;
        int ans=exgcd(a,m,x,y);
        if(b%ans)puts("impossible");
        //目前式子求的是相加结果为最大公约数的结果
        //x需要再乘以(b/ans)mod m
        else cout<<x*(b/ans)%m<<endl;

    }
}

四、中国剩余定理

m两两互斥,要求大括号里面成立,Mi^-1表示Mi以mi为模的逆。Mi是除了mi之外的所有m的乘积。最后得到的x的式子是满足所有的前面大括号的条件的。

  • 26
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值