一、贪心区间问题
(一)905 区间选点
找出一组个数最少的点集,使得每个区间都至少包含其中的一个点
思路:按照区间的右边界排序。
证明:为什么这样选的点数是最小的
1、根据思路的过程,我们找到的所有点的集合是一组合法解。
2、ans(最优解)<= cnt(一个可行解)
3、按照思路我们最后得到的点集就是所有互不相交的区间。根据常识,最优解一定最少是需要这些个互不相交的区间的个数(cnt)个的,也就是ans>=cnt
4、得证
#include<bits/stdc++.h>
using namespace std;
//905 区间选点
const int N=1e5+10;
struct Range
{
int l,r;
//重载小于号
bool operator < (const Range &W)const
{
return r<W.r;
}
}range[N];
int main()
{
int n;
cin>>n;
for(int i=0;i<n;i++)
{
int l,r;
cin>>l>>r;
range[i]={l,r};
}
//对边进行排序
sort(range,range+n);
int ans=0,ed=-2e9;
for(int i=0;i<n;i++)
{
if(range[i].l>ed)ans++,ed=range[i].r;
}
cout<<ans<<endl;
return 0;
}
(二) 908 最大不相交区间数量
与(一)完全相同
(三)906 区间分组
按照左端点进行分组,利用优先队列(小根堆)实现对目前所有分组的最右端的动态管理。
比最小的都小,就新建一个组,也就是新插入一个右端点参与排序;
#include<bits/stdc++.h>
using namespace std;
//906 区间分组
const int N=1e5+10;
//按照左端点排序
struct Range
{
int l,r;
bool operator <(const Range &W)const
{
return l<W.l;
}
}range[N];
int main()
{
int n;
cin>>n;
for(int i=0;i<n;i++)
{
int l,r;
cin>>l>>r;
range[i]={l,r};
}
sort(range,range+n);
priority_queue<int,vector<int>,greater<int>>heap;
for(int i=0;i<n;i++)
{
auto t=range[i];
//需要建立新的小组
if(heap.empty()||heap.top()>t.l)heap.push(t.r);
//不需要建立任何小组
else
{
//更新某一个小组的最新情况
heap.pop();//删除最小的那个
heap.push(t.r);//添加到那个小组里面
}
}
cout<<heap.size()<<endl;
return 0;
}
(四)907 区间覆盖
给出一个大区间和一组小区间,找出能使得大区间覆盖的小区间数量的最小值。
按照左端点排序,然后找可以覆盖上次覆盖后的截止位置开始的位置的区间,并找出右端点最大的那个区间。
(第一次自己独立做出的贪心)
#include<bits/stdc++.h>
using namespace std;
//907 区间覆盖
const int N=1e5+10;
int n;
//按照左端点排序
struct Range
{
int l,r;
bool operator <(const Range &W)const
{
return l<W.l;
}
}range[N];
int cont(int L,int R)
{
int ed=L;
bool st[N];
memset(st,true,sizeof(st));
sort(range,range+n);
int cnt=0;
if(ed<range[0].l)return -1;//特殊情况第一个点都不能覆盖
while(ed<R)
{
int idx,maxx=-2e9;
for(int i=0;i<n;i++) //循环找最合适的
{
if(range[i].l<=ed)
{
if(st[i]&&range[i].r>maxx)
{
maxx=range[i].r;
idx=i;
}
}
else
{
break;
}
}
if(maxx==-2e9)return -1;//在某次循环中没有找到任何一个合适的
st[idx]=false;
ed=range[idx].r;
maxx=-2e9;
cnt++;
}
return cnt;
}
int main()
{
int L,R;
cin>>L>>R;
cin>>n;
int flag=0;
for(int i=0;i<n;i++)
{
int l,r;
cin>>l>>r;
range[i]={l,r};
if(l<=L&&r>=R&&flag==0)//存在一个特殊区间可以整个覆盖掉直接输出
{
flag=1;
cout<<1<<endl;
}
}
if(!flag)
{
// cout<<"此时"<<flag<<endl;
cout<<cont(L,R)<<endl;
}
}
本题y做法是利用双指针,i进行n次遍历,每次让j从i开始向后找右边边界最大而且左边界是小于ed的。然后更新i为j,为什么要更新i呢,因为只要找到某个符合条件的j之后,它前面的所有线段一定是不可用的。
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 100010;
int n;
struct Range
{
int l, r;
bool operator< (const Range &W)const
{
return l < W.l;
}
}range[N];
int main()
{
int st, ed;
scanf("%d%d", &st, &ed);
scanf("%d", &n);
for (int i = 0; i < n; i ++ )
{
int l, r;
scanf("%d%d", &l, &r);
range[i] = {l, r};
}
sort(range, range + n);
int res = 0;
bool success = false;
for (int i = 0; i < n; i ++ )
{
int j = i, r = -2e9;
while (j < n && range[j].l <= st)
{
r = max(r, range[j].r);
j ++ ;
}
if (r < st)
{
res = -1;
break;
}
res ++ ;
if (r >= ed)
{
success = true;
break;
}
st = r;
i = j - 1;
}
if (!success) res = -1;
printf("%d\n", res);
return 0;
}
作者:yxc
链接:https://www.acwing.com/activity/content/code/content/65087/
来源:AcWing
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
二、Huffman树
(一)148 合并果子
自己ac啦
#include<bits/stdc++.h>
using namespace std;
//148 合并果子
const int N=1e5+10;
int main()
{
priority_queue<int,vector<int>,greater<int>>heap;
int n;
cin>>n;
for(int i=0;i<n;i++)
{
int num;
cin>>num;
heap.push(num);
}
if(heap.size()==1)
{
cout<<0<<endl;
return 0;
}
int ant=0;
while(!heap.empty())
{
int i=heap.top();
heap.pop();
ant+=i;
if(heap.empty())break;
int j=heap.top();
heap.pop();
ant+=j;
if(heap.empty())break;
heap.push(i+j);
}
cout<<ant<<endl;
return 0;
}
y总做法:循环条件是只要堆里面有多于两个的点就行
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
int main()
{
int n;
scanf("%d", &n);
priority_queue<int, vector<int>, greater<int>> heap;
while (n -- )
{
int x;
scanf("%d", &x);
heap.push(x);
}
int res = 0;
while (heap.size() > 1)
{
int a = heap.top(); heap.pop();
int b = heap.top(); heap.pop();
res += a + b;
heap.push(a + b);
}
printf("%d\n", res);
return 0;
}
作者:yxc
链接:https://www.acwing.com/activity/content/code/content/65246/
来源:AcWing
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。