3485.最大异或和
思路:利用前缀数组S(异或)的思想,要求某个区间的数的异或和,可以用区间的两个端点的S值进行异或。(这个地方注意边界)。
怎么在限制范围内求两个Si值的异或的最大值呢。
利用字典树的思想,让字典树的cnt数组保存这个结点出现的次数。
在二叉树中找结果(具体做法就是从高位到低位尽量找和当前的数不同的分支),可能存在找到不在区间内的S值。我们可以从1到n遍历,删掉没有用的,而且后面也不会用到了。
debug :res*=2+1 和 res=res*2+1不一样,后者等于 res=res*(res*2+1);
#include<bits/stdc++.h>
using namespace std;
const int N=100010*31,M=100010;
//3485最大异或和
int p[N][32];
int cnt[N];
int a[N],s[N];
int n,m;
int idx=0;
//注意边界问题:si和sj异或后的结果是i到j-1的异或和
//所以每次删除的是i-m-1位置的数。
//因为从m+1就有需要删除的了此时考虑到用到了s0,所以先要把s0删除
void insertt(int x,int t)
{
int f=0;//因为本来父节点就为0
for(int i=30;i>=0;i--)
{
int u=x>>i&1;//获取第i位的二进制值
if(!p[f][u])p[f][u]=++idx;
f=p[f][u];
cnt[f]+=t;//插入的时候某个节点出现一次就加1,要删除就-1
}
}
int query(int x)
{
int f=0;
int res=0;
for(int i=30;i>=0;i--)
{
int u=x>>i&1;
if(cnt[p[f][!u]])//和x的第i位不同的分支存在
{
//这个判断条件不可以直接用p数组。
//可能已经把经过这个结点的数删没了,但是p还是有值的。
res=2*res+1;
f=p[f][!u];
}
else
{
res*=2;
f=p[f][u];
}
}
return res;
}
int main()
{
cin>>n>>m;
for(int i=1;i<=n;i++)
{
cin>>a[i];
s[i]=s[i-1]^a[i];
}
insertt(s[0],1);
int ans=-1*N;
for(int i=1;i<=n;i++)
{
if(i>m)insertt(s[i-m-1],-1);
ans=max(ans,query(s[i]));
insertt(s[i],1);
}
cout<<ans<<endl;
}
835 Trie字符串统计(第一个独立写出的字典树)
#include<bits/stdc++.h>
using namespace std;
//835字符串统计
const int N=100010;
char f[N][30];
int cnt[N];
int idx=0;
void insertt(string s)
{
int p=0;
for(int i=0;i<s.length();i++)
{
if(!f[p][s[i]-'a'])f[p][s[i]-'a']=++idx;
p=f[p][s[i]-'a'];
}
cnt[p]++;
}
int query(string s)
{
int p=0;
for(int i=0;i<s.length();i++)
{
if(f[p][s[i]-'a'])p=f[p][s[i]-'a'];
else return 0;
}
return cnt[p];
}
int main()
{
int n;
cin>>n;
while(n--)
{
string s;
char c;
cin>>c;
cin>>s;
if(c=='I')
{
insertt(s);
}
else
{
cout<<query(s)<<endl;
}
}
}
143最大异或对
开始的时候在insert和query把获取各个位的边界和遍历方向弄错了;
(先做第一个后面两道都做的很快)
#include<bits/stdc++.h>
using namespace std;
//143最大异或对
const int N=1e5+10,M=3e6+10;
int f[M][3];
int cnt[N];
int idx=0;
void insertt(int x)
{
int p=0;
for(int i=30;i>=0;i--)
{
int u=x>>i&1;
if(!f[p][u])f[p][u]=++idx;
p=f[p][u];
cnt[p]++;
}
}
//找当前数的最大异或和
int query(int x)
{
int p=0;
int res=0;
for(int i=30;i>=0;i--)
{
int u=x>>i&1;
if(f[p][!u])
{
res=res*2+1;
p=f[p][!u];
}
else
{
res*=2;
p=f[p][u];
}
}
return res;
}
int main()
{
int n;
cin>>n;
int ans=0;
while(n--)
{
int num;
cin>>num;
insertt(num);
ans=max(ans,query(num));
}
cout<<ans<<endl;
}