蓝桥杯每日一题(Tire树,字典树)

3485.最大异或和

思路:利用前缀数组S(异或)的思想,要求某个区间的数的异或和,可以用区间的两个端点的S值进行异或。(这个地方注意边界)。

怎么在限制范围内求两个Si值的异或的最大值呢。

利用字典树的思想,让字典树的cnt数组保存这个结点出现的次数。

在二叉树中找结果(具体做法就是从高位到低位尽量找和当前的数不同的分支),可能存在找到不在区间内的S值。我们可以从1到n遍历,删掉没有用的,而且后面也不会用到了。

debug :res*=2+1  和 res=res*2+1不一样,后者等于 res=res*(res*2+1);

#include<bits/stdc++.h>
using namespace std;
const int N=100010*31,M=100010;
//3485最大异或和
int p[N][32];
int cnt[N];
int a[N],s[N];
int n,m;
int idx=0;
//注意边界问题:si和sj异或后的结果是i到j-1的异或和
//所以每次删除的是i-m-1位置的数。
//因为从m+1就有需要删除的了此时考虑到用到了s0,所以先要把s0删除

void insertt(int x,int t)
{
    int f=0;//因为本来父节点就为0
    for(int i=30;i>=0;i--)
    {
        int u=x>>i&1;//获取第i位的二进制值
        if(!p[f][u])p[f][u]=++idx;
        f=p[f][u];
        cnt[f]+=t;//插入的时候某个节点出现一次就加1,要删除就-1
    }
}


int query(int x)
{
    int f=0;
    int res=0;
    for(int i=30;i>=0;i--)
    {
        int u=x>>i&1;
        if(cnt[p[f][!u]])//和x的第i位不同的分支存在
        {
            //这个判断条件不可以直接用p数组。
            //可能已经把经过这个结点的数删没了,但是p还是有值的。
            res=2*res+1;
            f=p[f][!u];
        }
        else
        {
            res*=2;
            f=p[f][u];
        }
    }
    return res;
}



int main()
{
    cin>>n>>m;
    for(int i=1;i<=n;i++)
    {
        cin>>a[i];
        s[i]=s[i-1]^a[i];
    }
    insertt(s[0],1);
    int ans=-1*N;
    for(int i=1;i<=n;i++)
    {
        if(i>m)insertt(s[i-m-1],-1);
        ans=max(ans,query(s[i]));
        insertt(s[i],1);
    }
    cout<<ans<<endl;


}

835 Trie字符串统计(第一个独立写出的字典树)

#include<bits/stdc++.h>
using namespace std;
//835字符串统计
const int N=100010;
char f[N][30];
int cnt[N];
int idx=0;
void insertt(string s)
{
    int p=0;
    for(int i=0;i<s.length();i++)
    {
        if(!f[p][s[i]-'a'])f[p][s[i]-'a']=++idx;
        p=f[p][s[i]-'a'];
    }
    cnt[p]++;
}


int query(string s)
{
    int p=0;
    for(int i=0;i<s.length();i++)
    {
       if(f[p][s[i]-'a'])p=f[p][s[i]-'a'];
       else return 0;
    }
    return cnt[p];
}
int main()
{
    int n;
    cin>>n;
    while(n--)
    {
        string s;
        char c;
        cin>>c;
        cin>>s;
        if(c=='I')
        {
            insertt(s);
        }
        else
        {
            cout<<query(s)<<endl;
        }

    }
}

143最大异或对

开始的时候在insert和query把获取各个位的边界和遍历方向弄错了;

(先做第一个后面两道都做的很快)

#include<bits/stdc++.h>
using namespace std;
//143最大异或对
const int N=1e5+10,M=3e6+10;
int f[M][3];
int cnt[N];
int idx=0;
void insertt(int x)
{
    int p=0;
    for(int i=30;i>=0;i--)
    {
        int u=x>>i&1;
        if(!f[p][u])f[p][u]=++idx;
        p=f[p][u];
        cnt[p]++;
    }
}

//找当前数的最大异或和
int query(int x)
{
    int p=0;
    int res=0;
    for(int i=30;i>=0;i--)
    {

        int u=x>>i&1;
        if(f[p][!u])
        {
            res=res*2+1;
            p=f[p][!u];
        }
        else
        {
            res*=2;
            p=f[p][u];
        }
    }
    return res;
}

int main()
{
    int n;
    cin>>n;
    int ans=0;
    while(n--)
    {
        int num;
        cin>>num;
        insertt(num);
        ans=max(ans,query(num));
    }
    cout<<ans<<endl;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值