Kettle PDI小白新手/进阶/必备 大数据基础之一数据清洗(ETL)基础进阶总结 1.6万字长文 附带大数据流处理和批处理的定义,Spark,Flink和Storm优缺点和适用场景 混合处理模式

Kettle ETL 数据清洗与集成

Kettle 是一个开源的数据集成工具,主要用于 ETL(抽取、转换、加载)过程。它的全名是 Pentaho Data Integration (PDI),而 Kettle 是其早期的名字,Kettle在2006年被Pentaho收购后,正式更名为Pentaho Data Integration(PDI),因此现在更常被称为PDI。PDI仍然是Pentaho产品套件中的一个重要组件,用于数据集成和ETL过程

(现在称为Pentaho Data Integration或PDI)
注意:我的文章一般针对的是已经学了但一知半解那种,或是刚进公司的新人 先收藏我这篇

啥也不会/第一次听说  :数据清洗-ETL  ? 去看下面这个老哥的教程 如下: ETL工具之Kettle_kettle哪个版本稳定-CSDN博客文章浏览阅读8.7k次,点赞14次,收藏62次。Kettle是一款国外开源的ETL工具,纯Java编写,可以在Window、Linux、Unix上运行,绿色无需安装,数据抽取高效稳定。_kettle哪个版本稳定https://blog.csdn.net/qq1196676009/article/details/124837163

他写的针对零基础 ,看完他那篇,再回头看我这篇,

我这篇主要是针对向 高级数据清洗工程师 进阶 的一种指路教程

注意:数据清洗和质量控制是数据处理过程中的关键环节。在PDI中,您可以使用各种转换步骤来清洗和规范数据,如过滤掉缺失值、处理重复数据、识别和处理异常值等。通过数据清洗和质量控制,可以确保数据质量良好,提高数据分析和决策的准确性。

与大数据平台集成是kettle的一个重要应用场景通过与Hadoop、Spark等大数据平台集成,可以处理大规模数据并实现复杂的数据处理任务。使用kettle的相关插件或步骤来连接大数据平台,实现数据的抽取、转换和加载,从而实现大数据处理和分析。

总结

虽然PDI(kettle ETL)是一个功能强大的数据清洗工具,提供了丰富的数据处理功能,但在处理大规模实时数据流方面,Apache Spark、Apache Flink和Apache Storm等工具在性能和功能上可能具有一定的优势。这些工具特别适合于需要高吞吐量、低延迟处理能力的实时数据集成和流式处理 批处理场景。

选择哪个工具取决于具体的应用场景、数据量大小、处理需求以及团队的技术栈。在决定使用哪个工具之前,建议对这些工具进行深入的评估和测试,以确定哪个最适合的业务需求。

流处理的优缺点和批处理刚好相反,且处理的数据模式也相反,这就像阴阳鱼一样相互对立,那么肯定会有人突发奇想: 能不能结合使用综合两者优点,对冲缺点风险?答案是:可以的,这个叫做:混合处理模式(Hybrid Processing)

Apache Spark、Apache Flink和Apache Storm,混合处理模式 在文末【8】的上面有详解

  

写文不易   给我点点关注  和点点赞   点点收藏吧

下面这个链接是我主页

      3分云计算-CSDN博客3分云计算擅长云计算及运维,大数据运维及大数据基础,k8s,等方面的知识,3分云计算关注kubernetes,求职招聘,数据仓库,量子计算,ssh,redis,spring,java,apache,elasticsearch,devops,flume,mysql,vim,开源,空间计算,python,zabbix,github,oracle,nginx,ubuntu,elk,华为云,开源软件,自动化,缓存,数据结构,交友,gitee,flink,运维,pycharm,kafka,服务器,gitlab,搜索引擎,运维开发,大数据,centos,hive,容器,idea,金融,docker,sql,ansible,git,spark,linux,debian,jenkins,json,hadoop,sublime text,数据库,云计算,系统架构,程序人生,负载均衡,vscode,hdfs,bash,aws,etcd,低代码领域.https://blog.csdn.net/qq_61414097

如何用sql在1分钟从1T数据中精准定位查询?Hive离线数仓 Spark分析_hive 通过sparksql查询能力-CSDN博客文章浏览阅读3.3k次,点赞65次,收藏20次。在大数据-Hadoop体系中 ,spark批处理和hive离线数仓可以说是对立并行的两个大分支技术栈,,,建议主攻其一,另一个灵活使用就行。他们是2015出现在国内,2017年之后国外各大公司纷纷采用,国内2020采用的,目前属于很前沿,并且很主流,很顶层的技术。(注:19年国内云计算开始起势,大数据的发展与云计算和人工智能等密切相关,更离不开芯片,硬件存储技术等相关支撑,它们之间相辅相成_hive 通过sparksql查询能力https://blog.csdn.net/qq_61414097/article/details/140999898

以下是 Kettle 的基础详解:

1. 主要功能

  • 数据抽取(Extract): 从不同的数据源(如数据库、文件、Web 服务等)中提取数据。
  • 数据转换(Transform): 对提取的数据进行清洗、格式转换、聚合等操作,以满足目标数据仓库或数据湖的要求。
  • 数据加载(Load): 将转换后的数据加载到目标系统中,如数据库、数据仓库或数据湖。

2. 核心组件

Kettle 主要由以下几个核心组件构成:

  • Spoon: 图形化设计工具,用于创建和调试转换(Transformations)和作业(Jobs)。
  • Pan: 命令行工具,用于执行转换。
  • Kitchen: 命令行工具,用于执行作业。
  • Carte: 轻量级的 Web 服务器,用于远程执行转换和作业。

3. 转换(Transformations)

转换是 Kettle 中的基本操作单元,用于定义数据的提取和转换过程。一个转换由多个步骤(Steps)组成,这些步骤可以是数据输入、数据处理、数据输出等各种操作。

常见的步骤类型包括:
  • 输入步骤: 从不同的数据源读取数据,如文本文件输入、数据库输入、Excel 输入等。
  • 输出步骤: 将数据写入目标系统,如文本文件输出、数据库输出、Excel 输出等。
  • 转换步骤: 对数据进行各种转换操作,如过滤、排序、聚合、查找替换等。

4. 作业(Jobs)

作业用于控制多个转换的执行顺序和条件。作业由多个作业条目(Job Entries)组成,这些条目可以是转换的执行、文件操作、数据库操作、条件判断等。

5. 设计和执行

  • 设计: 使用 Spoon 进行图形化设计,拖放步骤和作业条目,设置其属性,连接各个步骤和条目,形成一个完整的 ETL 流程。
  • 执行: 可以在 Spoon 中调试和执行转换和作业,也可以使用 Pan 和 Kitchen 命令行工具进行批处理执行。

6. 数据源支持

Kettle 支持多种数据源,包括:

  • 关系数据库: 如 MySQL、PostgreSQL、Oracle、SQL Server 等。
  • 文件: 如 CSV、Excel、XML、JSON 等。
  • 大数据平台: 如 Hadoop、Hive、HBase 等。
  • 云服务: 如 AWS、Google Cloud、Azure 等。

7. 优点

  • 开源免费: 社区版是开源的,可以自由下载、使用和修改。
  • 可扩展性: 可以通过编写自定义插件来扩展其功能。
  • 易用性: 提供图形化界面,设计 ETL 流程非常直观。
  • 丰富的功能: 内置大量的转换和作业步骤,几乎涵盖了所有常见的 ETL 需求。

8. 适用场景

  • 数据仓库 ETL 过程
  • 数据迁移
  • 数据清洗和整合
  • 定时任务调度和执行
  • 数据报表生成

Kettle 是一个功能强大且灵活的数据集成工具,适用于各种数据处理和集成需求。通过图形化界面和丰富的内置功能,可以快速构建和执行复杂的 ETL 流程。

Kettle进阶教程大纲

(现在称为Pentaho Data Integration或PDI,全名是 Pentaho Data Integration (PDI),而 Kettle 是其早期的名字)

【1】PDI高级转换设计

学习如何使用PDI创建复杂的数据转换,包括使用参数、变量、循环和条件语句等功能。

 kettle 提供了一个图形化的界面,允许用户通过拖放组件来设计数据转换流程。下面我将介绍如何使用PDI创建包含参数、变量、循环和条件语句的高级数据转换设计。

1. 参数化转换

参数允许你为转换提供动态值,可以在执行时指定,也可以在PDI作业中配置。

创建参数:
  • 打开PDI,创建一个新的转换。
  • 在“转换”菜单中选择“参数”。
  • 点击“新建”,输入参数名称和描述,例如 input_file
  • 设置参数类型,比如文件路径。
使用参数:
  • 在转换中,使用“获取变量值”步骤来获取参数值。
  • 将获取的值用于文件输入、数据库连接等需要动态配置的地方。

2. 变量

变量用于在转换中存储和传递值。

创建和使用变量:
  • 在转换中,使用“设置变量值”步骤来创建或修改变量。
  • 变量可以在转换的任何地方使用,比如在“计算器”步骤中进行计
评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

李文昊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值