Kettle 是一个开源的数据集成工具,主要用于 ETL(抽取、转换、加载)过程。它的全名是 Pentaho Data Integration (PDI),而 Kettle 是其早期的名字,Kettle在2006年被Pentaho收购后,正式更名为Pentaho Data Integration(PDI),因此现在更常被称为PDI。PDI仍然是Pentaho产品套件中的一个重要组件,用于数据集成和ETL过程。
(现在称为Pentaho Data Integration或PDI)
注意:我的文章一般针对的是已经学了但一知半解那种,或是刚进公司的新人 先收藏我这篇
啥也不会/第一次听说 :数据清洗-ETL ? 去看下面这个老哥的教程 如下: ETL工具之Kettle_kettle哪个版本稳定-CSDN博客文章浏览阅读8.7k次,点赞14次,收藏62次。Kettle是一款国外开源的ETL工具,纯Java编写,可以在Window、Linux、Unix上运行,绿色无需安装,数据抽取高效稳定。_kettle哪个版本稳定
https://blog.csdn.net/qq1196676009/article/details/124837163
他写的针对零基础 ,看完他那篇,再回头看我这篇,
我这篇主要是针对向 高级数据清洗工程师 进阶 的一种指路教程
注意:数据清洗和质量控制是数据处理过程中的关键环节。在PDI中,您可以使用各种转换步骤来清洗和规范数据,如过滤掉缺失值、处理重复数据、识别和处理异常值等。通过数据清洗和质量控制,可以确保数据质量良好,提高数据分析和决策的准确性。
与大数据平台集成是kettle的一个重要应用场景。通过与Hadoop、Spark等大数据平台集成,可以处理大规模数据并实现复杂的数据处理任务。使用kettle的相关插件或步骤来连接大数据平台,实现数据的抽取、转换和加载,从而实现大数据处理和分析。
总结
虽然PDI(kettle ETL)是一个功能强大的数据清洗工具,提供了丰富的数据处理功能,但在处理大规模实时数据流方面,Apache Spark、Apache Flink和Apache Storm等工具在性能和功能上可能具有一定的优势。这些工具特别适合于需要高吞吐量、低延迟处理能力的实时数据集成和流式处理 批处理场景。
选择哪个工具取决于具体的应用场景、数据量大小、处理需求以及团队的技术栈。在决定使用哪个工具之前,建议对这些工具进行深入的评估和测试,以确定哪个最适合的业务需求。
流处理的优缺点和批处理刚好相反,且处理的数据模式也相反,这就像阴阳鱼一样相互对立,那么肯定会有人突发奇想: 能不能结合使用综合两者优点,对冲缺点风险?答案是:可以的,这个叫做:混合处理模式(Hybrid Processing)
Apache Spark、Apache Flink和Apache Storm,混合处理模式 在文末【8】的上面有详解
写文不易 给我点点关注 和点点赞 点点收藏吧
下面这个链接是我主页
以下是 Kettle 的基础详解:
1. 主要功能
- 数据抽取(Extract): 从不同的数据源(如数据库、文件、Web 服务等)中提取数据。
- 数据转换(Transform): 对提取的数据进行清洗、格式转换、聚合等操作,以满足目标数据仓库或数据湖的要求。
- 数据加载(Load): 将转换后的数据加载到目标系统中,如数据库、数据仓库或数据湖。
2. 核心组件
Kettle 主要由以下几个核心组件构成:
- Spoon: 图形化设计工具,用于创建和调试转换(Transformations)和作业(Jobs)。
- Pan: 命令行工具,用于执行转换。
- Kitchen: 命令行工具,用于执行作业。
- Carte: 轻量级的 Web 服务器,用于远程执行转换和作业。
3. 转换(Transformations)
转换是 Kettle 中的基本操作单元,用于定义数据的提取和转换过程。一个转换由多个步骤(Steps)组成,这些步骤可以是数据输入、数据处理、数据输出等各种操作。
常见的步骤类型包括:
- 输入步骤: 从不同的数据源读取数据,如文本文件输入、数据库输入、Excel 输入等。
- 输出步骤: 将数据写入目标系统,如文本文件输出、数据库输出、Excel 输出等。
- 转换步骤: 对数据进行各种转换操作,如过滤、排序、聚合、查找替换等。
4. 作业(Jobs)
作业用于控制多个转换的执行顺序和条件。作业由多个作业条目(Job Entries)组成,这些条目可以是转换的执行、文件操作、数据库操作、条件判断等。
5. 设计和执行
- 设计: 使用 Spoon 进行图形化设计,拖放步骤和作业条目,设置其属性,连接各个步骤和条目,形成一个完整的 ETL 流程。
- 执行: 可以在 Spoon 中调试和执行转换和作业,也可以使用 Pan 和 Kitchen 命令行工具进行批处理执行。
6. 数据源支持
Kettle 支持多种数据源,包括:
- 关系数据库: 如 MySQL、PostgreSQL、Oracle、SQL Server 等。
- 文件: 如 CSV、Excel、XML、JSON 等。
- 大数据平台: 如 Hadoop、Hive、HBase 等。
- 云服务: 如 AWS、Google Cloud、Azure 等。
7. 优点
- 开源免费: 社区版是开源的,可以自由下载、使用和修改。
- 可扩展性: 可以通过编写自定义插件来扩展其功能。
- 易用性: 提供图形化界面,设计 ETL 流程非常直观。
- 丰富的功能: 内置大量的转换和作业步骤,几乎涵盖了所有常见的 ETL 需求。
8. 适用场景
- 数据仓库 ETL 过程
- 数据迁移
- 数据清洗和整合
- 定时任务调度和执行
- 数据报表生成
Kettle 是一个功能强大且灵活的数据集成工具,适用于各种数据处理和集成需求。通过图形化界面和丰富的内置功能,可以快速构建和执行复杂的 ETL 流程。
Kettle进阶教程大纲
(现在称为Pentaho Data Integration或PDI,全名是 Pentaho Data Integration (PDI),而 Kettle 是其早期的名字)
【1】PDI高级转换设计
学习如何使用PDI创建复杂的数据转换,包括使用参数、变量、循环和条件语句等功能。
kettle 提供了一个图形化的界面,允许用户通过拖放组件来设计数据转换流程。下面我将介绍如何使用PDI创建包含参数、变量、循环和条件语句的高级数据转换设计。
1. 参数化转换
参数允许你为转换提供动态值,可以在执行时指定,也可以在PDI作业中配置。
创建参数:
- 打开PDI,创建一个新的转换。
- 在“转换”菜单中选择“参数”。
- 点击“新建”,输入参数名称和描述,例如
input_file。- 设置参数类型,比如文件路径。
使用参数:
- 在转换中,使用“获取变量值”步骤来获取参数值。
- 将获取的值用于文件输入、数据库连接等需要动态配置的地方。
2. 变量
变量用于在转换中存储和传递值。
创建和使用变量:
- 在转换中,使用“设置变量值”步骤来创建或修改变量。
- 变量可以在转换的任何地方使用,比如在“计算器”步骤中进行计
Kettle ETL 数据清洗与集成

最低0.47元/天 解锁文章
1734

被折叠的 条评论
为什么被折叠?



