回文数
题目描述
回文数是指一个没有前导0的数,从左到右的数码和从右到左的数码是一样的。比如说10进制下的"121",这就是一个回文数。
我们将这个概念扩展到b进制,n=∑ki=0ai⋅bi,其中0≤ai<b,2≤b,ak>0,如果数列ak,ak−1,…,a0构成一个回文序列,那么就称n在b进制下是回文数。比如,5在2进制下是101(2),所以5在2进制下是回文数。
我们想知道n在b进制下为回文数时,最小的b是多少?
输入
第一行是一个整数T(1≤T≤1000),表示样例的个数。
每个样例是一个十进制整数n(1≤n≤106)。
输出
依次每行输出一个样例的结果,为一个整数,表示b。
样例输入
2 5 6
样例输出
2 5
#include<stdio.h>
int main()
{
int T,jz,j,x,flag,m,n,arr[100];
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
for(jz=2;jz<=n+1;jz++)//只要考虑到进制 n+1
//因为从进制 n+1 开始数码就是该数本身了,而题目要求最小进制
{
m=n;
x=0;
while(m!=0)
{
arr[x++]=m%jz;
if(arr[0]==0)
{
break;//有前导 0 不合题意
}
m/=jz;
}
if(arr[0]==0)//这是有前导 0 时跳出来的情况
{
continue;
}
flag=1;
for(j=0;j<x/2;j++)
{
if(arr[j]!=arr[x-j-1])//判断是否回文
{
flag=0;
break;
}
}
if(flag)
{
printf("%d\n",jz);
break;
}
}
}
return 0;
}