XTU OJ 1376 回文数

回文数

题目描述

回文数是指一个没有前导0的数,从左到右的数码和从右到左的数码是一样的。比如说10进制下的"121",这就是一个回文数。

我们将这个概念扩展到b进制,n=∑ki=0ai⋅bi,其中0≤ai<b,2≤b,ak>0,如果数列ak,ak−1,…,a0构成一个回文序列,那么就称n在b进制下是回文数。比如,5在2进制下是101(2),所以5在2进制下是回文数。

我们想知道n在b进制下为回文数时,最小的b是多少?

输入

第一行是一个整数T(1≤T≤1000),表示样例的个数。

每个样例是一个十进制整数n(1≤n≤106)。

输出

依次每行输出一个样例的结果,为一个整数,表示b。

样例输入

2 
5 
6

样例输出

2 
5
#include<stdio.h>
int main()
{
	int T,jz,j,x,flag,m,n,arr[100];
	scanf("%d",&T);
	while(T--)
	{
		scanf("%d",&n);
		for(jz=2;jz<=n+1;jz++)//只要考虑到进制 n+1
		//因为从进制 n+1 开始数码就是该数本身了,而题目要求最小进制 
		{
			m=n;
			x=0;
			while(m!=0)
			{
				arr[x++]=m%jz;
				if(arr[0]==0)
				{
					break;//有前导 0 不合题意 
				}
				m/=jz;
			}
			if(arr[0]==0)//这是有前导 0 时跳出来的情况 
			{
				continue;
			} 
			flag=1;
			for(j=0;j<x/2;j++)
			{
				if(arr[j]!=arr[x-j-1])//判断是否回文
				{
					flag=0;
					break;	
				}	
			}
			if(flag)
			{
				printf("%d\n",jz);
				break;
			} 
		}
	}
	return 0;
}

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值