Perfect Palindrome Number
题目描述
一个10进制无前导0的整数a,如果a有偶数位,只含有0和1的数码,且从左到右和从右到左读都是一样的,那么我们称其为“完美回文数”。 比如,1001,11这些都是完美回文数,而12,1010,1,101这些都不是“完美回文数”。 请问一个整数n等于最少多少个完美回文数的和?
输入
第一行是样例数T(1≤T≤1000)。 以后每行一个样例,为一个整数n(1≤n≤105)
输出
每行输出一个样例的结果,如果n不能由完美回文数累加得到,输出0。
样例输入
5 1 11 1012 2002 3333
样例输出
0 1 2 2 3
思路:一个个地去试。
#include<stdio.h>
int main()
{
int T,n,i,j,k;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
if(n%11!=0)//1001,1111都是11的倍数
{
printf("0\n");
continue;
}
for(i=0;i<=n/11;i++)
{
for(j=0;j<=n/1001;j++)
{
for(k=0;k<=n/1111;k++)
{
if(i*11+j*1001+k*1111==n)
{
printf("%d\n",i+j+k);
goto end;//为下一个样例做准备
}
}
}
}
end: ;
}
return 0;
}