蓝桥杯C++大学B组一个月冲刺记录2024/3/14

蓝桥杯C++大学B组一个月冲刺记录2024/3/14

规则:每日三题

1.正则问题

考虑一种简单的正则表达式:只由 x ( ) | 组成的正则表达式。
小明想求出这个正则表达式能接受的最长字符串的长度。
例如 ((xx|xxx)x|(x|xx))xx 能接受的最长字符串是: xxxxxx,长度是6。

递归
主要思想:把处理字符串的过程联想到二叉树

#include<iostream>

using namespace std;

string s;
int i = 0;

int dfs(){
    int ans = 0;
    
    while(i < s.size()){
        if(s[i] == '('){
            i ++;
            ans += dfs();
            i ++;
        }
        if(s[i] == '|'){
            i++;
            ans = max(ans,dfs());
        }
        if(s[i] == 'x'){
            i ++;
            ans ++;
        }
        if(s[i] == ')') break;
    }

    return ans;

}

int main(){
    
    cin >> s;

    cout << dfs() << endl;

    return 0;
}

约数之和

假设现在有两个自然数 A 和 B,S是 AB的所有约数之和。

数论 + 递归
这个题的数学推导比较复杂,节约时间就不写了

逆元做法:直接通过等比数列求和公式,将除法通过逆元处理乘法即可

#include<iostream>

using namespace std;

typedef long long LL;

const int mod = 9901;

int a,b;

LL qmi(int a,int k,int p = mod){
    
    LL res = 1;
    
    while(k)
    {
        if(k & 1) res = res * a % p;
        a = a * (LL)a % p;
        k >>= 1;
    }

    return res;
}

int sum(int q, int n)
{   
    if((q - 1)%mod == 0) return n;
    else return (qmi(q,n) - 1)  * qmi(q - 1,mod - 2)% mod;
}

int main(){
    LL ans = 1;

    cin >> a >> b;
    
    if(a == 0){
        cout << "0" << endl;
        return 0;
    }
     
    for(int i = 2;i*i <= a; ++ i){
        
        int cnt = 0;
        while(a % i == 0){
            cnt ++;
            a = a / i;
        }
        if(cnt) ans = (LL)ans * sum(i , b * cnt + 1) % mod;
        
    }
        
    if(a > 1) ans = (LL)ans * sum(a , b + 1) % mod;
    cout << (ans % mod + mod ) % mod << endl;

    return 0;
}

递归做法:按照递归的思想去优化等比数列求和

#include<iostream>

using namespace std;

typedef long long LL;

const int mod = 9901;

int a,b;

LL qmi(int a,int k,int p = mod){
    
    LL res = 1;
    
    while(k)
    {
        if(k & 1) res = res * a % p;
        a = a * (LL)a % p;
        k >>= 1;
    }

    return res;
}

int sum(int p, int k)
{
    if (k == 1) return 1;
    if (k % 2 == 0) return (1 + qmi(p, k / 2)) * sum(p, k / 2) % mod;
    return (sum(p, k - 1) + qmi(p, k - 1)) % mod;
}

int main(){
    LL ans = 1;

    cin >> a >> b;
    
    if(a == 0){
        cout << "0" << endl;
        return 0;
    }
    
    
    for(int i = 2;i*i <= a; ++ i){
        
        int cnt = 0;
        while(a % i == 0){
            cnt ++;
            a = a / i;
        }
        if(cnt) ans = (LL)ans * sum(i , b * cnt + 1) % mod;
        
    }    
    if(a > 1) ans = (LL)ans * sum(a , b + 1) % mod;   

    cout << ans << endl;

    return 0;
}

3.奶牛选美

听说最近两斑点的奶牛最受欢迎,约翰立即购进了一批两斑点牛。不幸的是,时尚潮流往往变化很快,当前最受欢迎的牛变成了一斑点牛。
约翰希望通过给每头奶牛涂色,使得它们身上的两个斑点能够合为一个斑点,让它们能够更加时尚。
牛皮可用一个 N×M的字符矩阵来表示,如下所示:

…XXXX…XXX…
…XXXX…XX…
.XXXX…XXX…
…XXXXX…
…XXX…
其中,X表示斑点部分。
如果两个 X在垂直或水平方向上相邻(对角相邻不算在内),则它们属于同一个斑点,由此看出上图中恰好有两个斑点。
约翰牛群里所有的牛都有两个斑点。
约翰希望通过使用油漆给奶牛尽可能少的区域内涂色,将两个斑点合为一个。
在上面的例子中,他只需要给三个 .区域内涂色即可(新涂色区域用 ∗表示):

…XXXX…XXX…
…XXXX*…XX…
.XXXX…**…XXX…
…XXXXX…
…XXX…
请帮助约翰确定,为了使两个斑点合为一个,他需要涂色区域的最少数量。

bfs + 染色
这个题数据范围小,随便做
按照染色结果分类编号,然后穷举编号不同的两个点的距离就可以了
在染色的时候就可以分类了,可以减少时间复杂度的常数。
但是AC耗时43ms就不改了

#include<iostream>
#include<queue>
#include<algorithm>

using namespace std;

const int M = 55;

typedef pair<int,int>PII;

char p[M][M];
int res[M][M];

int m,n,f;

int dx[4] = {1, 0, -1, 0};
int dy[4] = {0, 1, 0, -1};

void bfs(int i,int j){
    f++;
    queue<PII>q;
    
    q.push({i,j});
    res[i][j] = f;

    while(q.size() != 0){
        auto t = q.front();
        q.pop();
        
        for(int i = 0;i < 4; ++i){
            int xx = t.first + dx[i];
            int yy = t.second + dy[i];
            if(xx >= 0 && xx < m && yy >= 0&&yy < n&&p[xx][yy] == 'X'&& !res[xx][yy]){
              res[xx][yy] = f;
              q.push({xx,yy});
            }
        } 
    }

    return;   
}
int main(){
    cin >> m >> n;

    for(int i = 0;i < m;++i){
        cin >> p[i];
    }

    for(int i = 0;i < m;++i){
        for(int j = 0;j < n;++j){
            if(p[i][j] == 'X'&&!res[i][j]) bfs(i,j);
        }
    }
    vector<PII>a,b;
    for(int i = 0;i < m;++i){
        for(int j = 0;j < n;++j){
            if(res[i][j] == 1) a.push_back({i,j});
            if(res[i][j] == 2) b.push_back({i,j});
        }
    }
    int ans = 200;
    for(int i = 0;i < a.size();++i){
       for(int j = 0;j < b.size(); ++j){
        ans = min(ans,abs(a[i].first - b[j].first) + abs(a[i].second - b[j].second));
       }
    }

    cout << ans - 1 << endl;

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值