蓝桥杯C++大学B组一个月冲刺记录2024/3/14
规则:每日三题
1.正则问题
考虑一种简单的正则表达式:只由 x ( ) | 组成的正则表达式。
小明想求出这个正则表达式能接受的最长字符串的长度。
例如 ((xx|xxx)x|(x|xx))xx 能接受的最长字符串是: xxxxxx,长度是6。
递归
主要思想:把处理字符串的过程联想到二叉树
#include<iostream>
using namespace std;
string s;
int i = 0;
int dfs(){
int ans = 0;
while(i < s.size()){
if(s[i] == '('){
i ++;
ans += dfs();
i ++;
}
if(s[i] == '|'){
i++;
ans = max(ans,dfs());
}
if(s[i] == 'x'){
i ++;
ans ++;
}
if(s[i] == ')') break;
}
return ans;
}
int main(){
cin >> s;
cout << dfs() << endl;
return 0;
}
约数之和
假设现在有两个自然数 A 和 B,S是 AB的所有约数之和。
数论 + 递归
这个题的数学推导比较复杂,节约时间就不写了
逆元做法:直接通过等比数列求和公式,将除法通过逆元处理乘法即可
#include<iostream>
using namespace std;
typedef long long LL;
const int mod = 9901;
int a,b;
LL qmi(int a,int k,int p = mod){
LL res = 1;
while(k)
{
if(k & 1) res = res * a % p;
a = a * (LL)a % p;
k >>= 1;
}
return res;
}
int sum(int q, int n)
{
if((q - 1)%mod == 0) return n;
else return (qmi(q,n) - 1) * qmi(q - 1,mod - 2)% mod;
}
int main(){
LL ans = 1;
cin >> a >> b;
if(a == 0){
cout << "0" << endl;
return 0;
}
for(int i = 2;i*i <= a; ++ i){
int cnt = 0;
while(a % i == 0){
cnt ++;
a = a / i;
}
if(cnt) ans = (LL)ans * sum(i , b * cnt + 1) % mod;
}
if(a > 1) ans = (LL)ans * sum(a , b + 1) % mod;
cout << (ans % mod + mod ) % mod << endl;
return 0;
}
递归做法:按照递归的思想去优化等比数列求和
#include<iostream>
using namespace std;
typedef long long LL;
const int mod = 9901;
int a,b;
LL qmi(int a,int k,int p = mod){
LL res = 1;
while(k)
{
if(k & 1) res = res * a % p;
a = a * (LL)a % p;
k >>= 1;
}
return res;
}
int sum(int p, int k)
{
if (k == 1) return 1;
if (k % 2 == 0) return (1 + qmi(p, k / 2)) * sum(p, k / 2) % mod;
return (sum(p, k - 1) + qmi(p, k - 1)) % mod;
}
int main(){
LL ans = 1;
cin >> a >> b;
if(a == 0){
cout << "0" << endl;
return 0;
}
for(int i = 2;i*i <= a; ++ i){
int cnt = 0;
while(a % i == 0){
cnt ++;
a = a / i;
}
if(cnt) ans = (LL)ans * sum(i , b * cnt + 1) % mod;
}
if(a > 1) ans = (LL)ans * sum(a , b + 1) % mod;
cout << ans << endl;
return 0;
}
3.奶牛选美
听说最近两斑点的奶牛最受欢迎,约翰立即购进了一批两斑点牛。不幸的是,时尚潮流往往变化很快,当前最受欢迎的牛变成了一斑点牛。
约翰希望通过给每头奶牛涂色,使得它们身上的两个斑点能够合为一个斑点,让它们能够更加时尚。
牛皮可用一个 N×M的字符矩阵来表示,如下所示:
…
…XXXX…XXX…
…XXXX…XX…
.XXXX…XXX…
…XXXXX…
…XXX…
其中,X表示斑点部分。
如果两个 X在垂直或水平方向上相邻(对角相邻不算在内),则它们属于同一个斑点,由此看出上图中恰好有两个斑点。
约翰牛群里所有的牛都有两个斑点。
约翰希望通过使用油漆给奶牛尽可能少的区域内涂色,将两个斑点合为一个。
在上面的例子中,他只需要给三个 .区域内涂色即可(新涂色区域用 ∗表示):
…
…XXXX…XXX…
…XXXX*…XX…
.XXXX…**…XXX…
…XXXXX…
…XXX…
请帮助约翰确定,为了使两个斑点合为一个,他需要涂色区域的最少数量。
bfs + 染色
这个题数据范围小,随便做
按照染色结果分类编号,然后穷举编号不同的两个点的距离就可以了
在染色的时候就可以分类了,可以减少时间复杂度的常数。
但是AC耗时43ms就不改了
#include<iostream>
#include<queue>
#include<algorithm>
using namespace std;
const int M = 55;
typedef pair<int,int>PII;
char p[M][M];
int res[M][M];
int m,n,f;
int dx[4] = {1, 0, -1, 0};
int dy[4] = {0, 1, 0, -1};
void bfs(int i,int j){
f++;
queue<PII>q;
q.push({i,j});
res[i][j] = f;
while(q.size() != 0){
auto t = q.front();
q.pop();
for(int i = 0;i < 4; ++i){
int xx = t.first + dx[i];
int yy = t.second + dy[i];
if(xx >= 0 && xx < m && yy >= 0&&yy < n&&p[xx][yy] == 'X'&& !res[xx][yy]){
res[xx][yy] = f;
q.push({xx,yy});
}
}
}
return;
}
int main(){
cin >> m >> n;
for(int i = 0;i < m;++i){
cin >> p[i];
}
for(int i = 0;i < m;++i){
for(int j = 0;j < n;++j){
if(p[i][j] == 'X'&&!res[i][j]) bfs(i,j);
}
}
vector<PII>a,b;
for(int i = 0;i < m;++i){
for(int j = 0;j < n;++j){
if(res[i][j] == 1) a.push_back({i,j});
if(res[i][j] == 2) b.push_back({i,j});
}
}
int ans = 200;
for(int i = 0;i < a.size();++i){
for(int j = 0;j < b.size(); ++j){
ans = min(ans,abs(a[i].first - b[j].first) + abs(a[i].second - b[j].second));
}
}
cout << ans - 1 << endl;
return 0;
}