蓝桥杯C++大学B组一个月冲刺记录2024/3/20
规则:每日三题
今日的题很简单┗|`O′|┛ 嗷~~
1.奶酪
现有一块大奶酪,它的高度为 h
,它的长度和宽度我们可以认为是无限大的,奶酪中间有许多半径相同的球形空洞。
我们可以在这块奶酪中建立空间坐标系,在坐标系中,奶酪的下表面为 z=0,奶酪的上表面为 z=h。
现在,奶酪的下表面有一只小老鼠 Jerry,它知道奶酪中所有空洞的球心所在的坐标。
如果两个空洞相切或是相交,则 Jerry 可以从其中一个空洞跑到另一个空洞,特别地,如果一个空洞与下表面相切或是相交,Jerry 则可以从奶酪下表面跑进空洞;如果一个空洞与上表面相切或是相交,Jerry 则可以从空洞跑到奶酪上表面。
位于奶酪下表面的 Jerry 想知道,在不破坏奶酪的情况下,能否利用已有的空洞跑到奶酪的上表面去?
并查集
dfs或者bfs暴搜也可以,我甚至觉得二维化,区间合并也有道理
#include<iostream>
#include<vector>
using namespace std;
const int N = 1e3 + 10;
struct Node{
int x,y,z;
}q[N];
typedef long long LL;
int f[N];
int find(int x){
if(f[x] != x) f[x] = find(f[x]);
return f[x];
}
int n,h,r;
int main()
{
int T;
cin >> T;
while(T--)
{
cin >> n >> h >> r;
for(int i = 0;i <= n + 1;++i) f[i] = i;
for(int i = 1;i <= n;++i){
int x,y,z;
cin >> x >> y >> z;
q[i] = {x,y,z};
if(abs(z) <= r) f[find(i)] = find(0);
if(abs(z - h) <= r) f[find(i)] = find(n + 1);
}
for(int i = 1;i <= n;++i){
for(int j = 1;j < i;++j){
LL dx = abs(q[i].x - q[j].x);
LL dy = abs(q[i].y - q[j].y);
LL dz = abs(q[i].z - q[j].z);
if(dx * dx + dy * dy + dz * dz <= 4 * (LL) r * r) f[find(i)] = find(j);
}
}
if(find(0) == find(n + 1)) cout << "Yes" << endl;
else cout << "No" << endl;
}
return 0;
}
2.合并集合
一共有 n个数,编号是 1∼n,最开始每个数各自在一个集合中。
现在要进行 m个操作,操作共有两种:
M a b,将编号为 a 和 b的两个数所在的集合合并,如果两个数已经在同一个集合中,则忽略这个操作;
Q a b,询问编号为 a和 b的两个数是否在同一个集合中;
(并查集模板题)
并查集
#include<iostream>
using namespace std;
const int N = 1e5 + 10;
int f[N];
int find(int x){
if(f[x] != x) f[x] = find(f[x]);
return f[x];
}
int n,m;
int main(){
cin >> n >> m;
for(int i = 1; i <= n;++i) f[i] = i;
while(m--){
char c;
int x,y;
cin >> c >> x >> y;
if(c == 'M'){
x = find(f[x]);
y = find(f[y]);
f[x] = y;
}
else{
x = find(f[x]);
y = find(f[y]);
if(x == y) cout << "Yes" << endl;
else cout << "No" << endl;
}
}
return 0;
}
3. 连通块中点的数量
给定一个包含 n 个点(编号为 1∼n)的无向图,初始时图中没有边。
现在要进行 m 个操作,操作共有三种:
C a b,在点 a 和点 b 之间连一条边,a 和 b 可能相等;
Q1 a b,询问点 a 和点 b 是否在同一个连通块中,a 和 b 可能相等;
Q2 a,询问点 a 所在连通块中点的数量;
(并查集模板题2之查询连通块的数量)
并查集
#include<iostream>
using namespace std;
const int N = 1e5 + 10;
int n,m;
int f[N];
int cnt[N];
int find(int x){
if(f[x] != x) f[x] = find(f[x]);
return f[x];
}
int main(){
cin >> n >> m;
for(int i = 1;i <= n;++i){
f[i] = i;
cnt[i] = 1;
}
while(m--){
string c;
cin >> c;
int x,y;
if(c == "C"){
cin >> x >> y;
x = find(f[x]);
y = find(f[y]);
if(x != y){
f[x] = y;
cnt[y] += cnt[x];
}
}
if(c == "Q1"){
cin >> x >> y;
x = find(f[x]);
y = find(f[y]);
if(x != y) cout << "No" << endl;
else cout << "Yes" << endl;
}
if(c == "Q2"){
cin >> x;
x = find(f[x]);
cout << cnt[x] << endl;
}
}
return 0;
}