蓝桥杯C++大学B组一个月冲刺记录2024/3/21

蓝桥杯C++大学B组一个月冲刺记录2024/3/20

规则:每日三题

今日的题很简单┗|`O′|┛ 嗷~~

1.奶酪

现有一块大奶酪,它的高度为 h
,它的长度和宽度我们可以认为是无限大的,奶酪中间有许多半径相同的球形空洞。
我们可以在这块奶酪中建立空间坐标系,在坐标系中,奶酪的下表面为 z=0,奶酪的上表面为 z=h。 
现在,奶酪的下表面有一只小老鼠 Jerry,它知道奶酪中所有空洞的球心所在的坐标。
如果两个空洞相切或是相交,则 Jerry 可以从其中一个空洞跑到另一个空洞,特别地,如果一个空洞与下表面相切或是相交,Jerry 则可以从奶酪下表面跑进空洞;如果一个空洞与上表面相切或是相交,Jerry 则可以从空洞跑到奶酪上表面。
位于奶酪下表面的 Jerry 想知道,在不破坏奶酪的情况下,能否利用已有的空洞跑到奶酪的上表面去?

并查集
dfs或者bfs暴搜也可以,我甚至觉得二维化,区间合并也有道理

#include<iostream>
#include<vector>

using namespace std;

const int N = 1e3 + 10;

struct Node{
   int x,y,z;
}q[N];

typedef long long LL;

int f[N];

int find(int x){
   if(f[x] != x) f[x] = find(f[x]);
   return f[x];
}

int n,h,r;

int main()
{
   int T;
   cin >> T;
   while(T--)
   {
      cin >> n >> h >> r;

      for(int i = 0;i <= n + 1;++i) f[i] = i;

      for(int i = 1;i <= n;++i){
         int x,y,z;
         cin >> x >> y >> z;
         q[i] = {x,y,z};

         if(abs(z) <= r) f[find(i)] = find(0);
         if(abs(z - h) <= r) f[find(i)] = find(n + 1);
      }

      for(int i = 1;i <= n;++i){
         for(int j = 1;j < i;++j){
            LL dx = abs(q[i].x - q[j].x);
            LL dy = abs(q[i].y - q[j].y);
            LL dz = abs(q[i].z - q[j].z);

            if(dx * dx + dy * dy + dz * dz <= 4 * (LL) r * r) f[find(i)] = find(j);
            

         }
      }

      if(find(0) == find(n + 1)) cout << "Yes" << endl;
      else cout << "No" << endl;

   }

   return 0;

}

2.合并集合

一共有 n个数,编号是 1∼n,最开始每个数各自在一个集合中。
现在要进行 m个操作,操作共有两种:
M a b,将编号为 a 和 b的两个数所在的集合合并,如果两个数已经在同一个集合中,则忽略这个操作;
Q a b,询问编号为 a和 b的两个数是否在同一个集合中;

(并查集模板题)
并查集

#include<iostream>

using namespace std;

const int N = 1e5 + 10;

int f[N];

int find(int x){
   if(f[x] != x) f[x] = find(f[x]);
   return f[x];
}

int n,m;

int main(){
   cin >> n >> m;

   for(int i = 1; i <= n;++i) f[i] = i;

   while(m--){
      char c;
      int x,y;
      cin >> c >> x >> y;
      if(c == 'M'){
         x = find(f[x]);
         y = find(f[y]);
         f[x] = y;
      }
      else{
         x = find(f[x]);
         y = find(f[y]);
         if(x == y) cout << "Yes" << endl;
         else cout << "No" << endl;
      }
   }

   return 0;
}

3. 连通块中点的数量

给定一个包含 n 个点(编号为 1∼n)的无向图,初始时图中没有边。
现在要进行 m 个操作,操作共有三种:
C a b,在点 a 和点 b 之间连一条边,a 和 b 可能相等;
Q1 a b,询问点 a 和点 b 是否在同一个连通块中,a 和 b 可能相等;
Q2 a,询问点 a 所在连通块中点的数量;

(并查集模板题2之查询连通块的数量)
并查集

#include<iostream>

using namespace std;

const int N = 1e5 + 10;

int n,m;

int f[N];
int cnt[N];

int find(int x){
   if(f[x] != x) f[x] = find(f[x]);
   return f[x];
}

int main(){
   
   cin >> n >> m;

   for(int i = 1;i <= n;++i){
      f[i] = i;
      cnt[i] = 1;
   }

   while(m--){
      string c;
      cin >> c;
      int x,y;
      if(c == "C"){
        cin >> x >> y;
        x = find(f[x]);
        y = find(f[y]);
        if(x != y){
         f[x] = y;
         cnt[y] += cnt[x];
        }
      }
      if(c == "Q1"){
         cin >> x >> y;
         x = find(f[x]);
         y = find(f[y]);
         if(x != y) cout << "No" << endl;
         else cout << "Yes" << endl;
      }
      if(c == "Q2"){
         cin >> x;
         x = find(f[x]);
         cout << cnt[x] << endl;
      }
   }

   return 0;
   
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值