jmeter聚合报告中的99%line是什么意思

今天做软件测试题的时候,遇到这样一道题——jmeter聚合报告中的99%line是什么意思,我以为是99%请求的平均响应时间,结果居然不是。

翻阅资料了解了一下,

90% Line 

一组数由小到大进行排列,找到他的第90%个数(假如是12),那么这个数组中有90%的数将小于等于12 。 

用在性能测试的响应时间也将非常有意义,也就是90%请求响应时间不会超过12 秒。

翻译过来就是99%请求的最大响应时间。

<think>好的,我现在需要帮用户解决JMeter测试中出现异常率高达99%的问题。用户可能刚接触性能测试,遇到了高异常率,急需解决方案。首先,我应该结合提供的引用信息,找出可能的原因和对应的解决办法。 根据引用1,当并发增大时,异常率和响应时间飙升,可能需要系统级、JVM级或代码调优。引用3提到测试人员需要分析问题,开发人员找出原因并解决,比如修改配置、代码等。引用4提到了Tomcat的优化,比如调整keepalive超时和最大请求数,这可能和服务器配置有关。 首先,常见的异常原因可能有: 1. **服务器资源瓶颈**:比如CPU、内存、网络带宽用尽,导致请求无法处理。需要监控服务器资源使用情况。 2. **线程池配置不当**:如Tomcat的线程池最大连接数不够,导致大量请求排队或拒绝。引用4中提到的调整线程数可能有效。 3. **数据库连接池耗尽**:高并发下数据库连接不足,导致超时或拒绝。需要检查连接池配置,比如最大连接数是否合理。 4. **代码性能问题**:比如慢SQL、未优化的算法,导致处理时间过长。需要分析代码和数据库查询。 5. **JMeter自身配置问题**:比如JMeter机器资源不足,或测试脚本设计不合理,如没有合理设置超时时间、循环次数过多。 接下来,按照步骤排查: 1. **检查服务器资源**:使用监控工具(如top、htop、nmon)查看CPU、内存、磁盘IO和网络使用情况。如果资源饱和,可能需要升级硬件或优化应用。 2. **应用服务器配置**:参考引用4,调整Tomcat的线程参数,比如maxThreads、acceptCount,确保能处理高并发。例如,增加maxThreads到合理值,调整keepAliveTimeout避免过早断开连接。 3. **数据库优化**:检查数据库连接池配置(如HikariCP、DBCP),增加maxPoolSize。分析慢查询日志,优化索引或SQL语句。 4. **JVM调优**:检查GC日志,是否有频繁Full GC,导致应用暂停。调整堆大小(-Xms, -Xmx),选择合适的垃圾回收器。 5. **JMeter脚本优化**:确认脚本是否正确,比如参数化、断言设置是否合理。减少不必要的断言,使用CSV数据文件避免内存溢出。调整JMeter的JVM参数,增加内存分配。 6. **网络问题**:检查是否有防火墙限制、带宽不足或DNS解析问题。使用工具测试网络延迟和丢包率。 7. **逐步加压测试**:不要一开始就用高并发,使用阶梯式增加线程数,观察系统表现,找到瓶颈点。 用户可能需要具体步骤,比如如何调整Tomcat配置,如何分析日志。例如,引用4中的代码示例展示了如何定制Tomcat的Connector参数,可以指导用户修改。同时,提醒用户检查JMeter本身的配置,比如分布式测试来分担压力,或者使用命令行模式减少GUI开销。 此外,异常类型也很重要。如果是5xx错误,可能是服务器问题;4xx可能是请求错误。查看响应结果中的具体错误信息,针对性解决。例如,连接超时可能需要调整超时时间,或者增加服务器处理能力。 总结解决方案时,要分点列出,从服务器、应用配置、数据库、JMeter脚本等方面入手,确保用户能逐步排查。同时,引用相关的参考资料,如引用1提到的调优方向,引用4的Tomcat优化方法,增强回答的可信度。</think>### JMeter异常率99%的解决方案分析 #### 一、核心问题定位步骤 1. **确认异常类型** 通过JMeter的「查看结果树」组件分析具体异常类型(如HTTP 500/超时/连接拒绝),区分是服务端错误(5xx)还是请求配置错误(4xx)[^3]。 2. **监控系统资源** 使用`top`(Linux)或资源监视器(Windows)检查服务器: - CPU使用率是否超过80% - 内存是否出现OOM(内存溢出) - 磁盘I/O是否达到瓶颈 - 网络带宽是否饱和 (资源耗尽会直接导致服务崩溃或响应超时) --- #### 二、常见原因与解决方案 ##### 1. **服务器线程池耗尽** **现象**:Tomcat日志出现`Connection refused`或`Timeout` **优化方法**(参考引用[4]): ```java // 调整Tomcat线程池配置 protocol.setMaxThreads(1000); // 最大工作线程数 protocol.setAcceptCount(500); // 等待队列长度 protocol.setKeepAliveTimeout(30000); // 保持连接时间 ``` - **推荐值**:`MaxThreads = (CPU核心数 * 2) + 空闲线程缓冲数` ##### 2. **数据库连接池瓶颈** **检查点**: - MySQL的`SHOW STATUS LIKE 'Threads_connected'` - 连接池配置(如HikariCP的`maximumPoolSize`) **优化方案**: ```properties # application.properties示例 spring.datasource.hikari.maximum-pool-size=100 spring.datasource.hikari.connection-timeout=30000 ``` ##### 3. **代码级性能问题** **排查工具**: - Arthas的`trace`命令分析调用链路耗时 - 日志中打印慢SQL(需开启MySQL的`slow_query_log`) **典型优化**: - 为高频查询字段添加索引 - 使用Redis缓存热点数据 ##### 4. **JMeter自身配置问题** **优化方向**: - 使用命令行模式执行测试: ```bash jmeter -n -t test.jmx -l result.jtl ``` - 调整JMeter的JVM参数(修改`jmeter.bat`/`jmeter.sh`): ```bash HEAP="-Xms4g -Xmx8g" # 堆内存分配 ``` --- #### 三、进阶排查工具 | 工具 | 用途 | 关键命令/操作 | |---------------|-----------------------------|---------------------------| | JConsole | 监控JVM内存和线程状态 | 连接JMeter/应用进程 | | VisualVM | 分析CPU和内存热点 | 抽样器->CPU/内存 | | JStack | 导出线程快照排查死锁 | `jstack -l <pid> > dump.log` | | Jmeter聚合报告 | 分析平均响应时间/TPS/异常率变化曲线 | 重点关注陡升拐点 | --- #### 四、验证方案 1. **单接口压测** 使用10线程逐步递增至目标并发量,观察异常率拐点 2. **分布式压测** 通过多台JMeter Agent分担压力(避免JMeter自身成为瓶颈) 3. **对比优化效果** 修改配置后,保持相同测试参数重复执行,对比TPS和异常率曲线[^3] ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值