结式消元法 与 对可约判别法的思考的进展

明天考高代,今天必要复习!

等等,这是什么题目?

还能这样搞!

经过查阅,这是结式消元法。

一些资料记录在此:

代数方程组求解 - maTHμ - 计算机代数系统 (mathmu.github.io)

高次方程问题 - 知乎 (zhihu.com)

我立即想起了之前的关于艾森斯坦判别法的问题:我想建立多项式的平移不变量来直接判别一系列平移等价的多项式的可约性,但并不知道这个不变量该如何建立,索性我们先退而求其次——先建立尽可能多的平移不变量。

经过计算可以发现,f(x+t)的系数(bi)可以用f(x)的系数(ai)和关于t的多项式表示,

所以我们面临:

b0=f0(t)

b1=f1(t)

......

bn=fn(t)

希望建立一个多元函数g,使得g(b0,b1...bn)=g(a0,a1...an),对于任意平移量t都成立。

当时就意识到了,这是n&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值