20220425二次型复习

本文探讨了二次型的标准化过程,强调正交和规范化变换的作用,以及惯性定理在不变量理论中的应用。解释了正定二次型的几何意义,包括正特征值与内积的关系,以及正定矩阵的行列式和秩的性质。此外,还阐述了正定矩阵与顺序主子式的联系,以及半正定矩阵的区别。文章通过解析几何的视角深入理解了二次型和矩阵的正定性,并介绍了实对称矩阵的正定充分必要条件。
摘要由CSDN通过智能技术生成

自学解析几何的不变量内容时,感到有必要对于二次型来一波温故知新。

        N元二次型的标准化过程就是对n维二次超曲面做换系,正交标准化就是换到直角系,规范化是进一步做仿射变换成为标准图形(类似椭圆变圆)。惯性定理描述的就是换系前后曲线类型不改变。

        标准化本质是显化了曲线类型,但没有把曲线归一到规范型,比如对于x²+xy+y²,我们可以做x=u+v,y=u-v,使得方程显化为椭圆方程,但是进一步的我们可以代换时控制u,v的系数使得方程是一个规范椭圆——即是一个圆。

        规范型相同的二次型称为等价的。判断两个二次型是不是等价,就是在判断他们的超曲面类型是否相同,这在二元二次型里可以简单的通过解析几何里的二次曲线的不变量来判断。

        正定二次型有这样的特征:内积(a,Aa)≥0,换句话说,把A看做一个线性变换,那么a和Aa总成非钝角。另一个角度来看,正定二次型的特征值都是正数,而且一定可对角化。

        先前我们已经对可对角化的矩阵\线性变换做了理解:A可对角化意味着这个变换是简洁的,我们能找到一组基,使得A作用在这组基的每一个向量上面都只发生伸缩,且伸缩的系数是特征值。那么正定矩阵A特征值均正,就表明线性变换A对于基的伸缩一定是同向的(因为伸缩系数——特征值都是正的),即对于每一组基(想象为张成了一个坐标系),A都不改变坐标轴的朝向而仅发生同向的伸缩,所以直观上就可以理解为什么a和Aa总是成非钝角,我们成功的为正定二次型编了一个“故事”来理解它。

        (什么正定矩阵的行列式大于0现在也显然了,只需注意到行列式是所有特征值的积。)

        还记得吗?有一个题目是证明形如xx的矩阵的特征值一定小于等于1,这即是说明它做的伸缩一定是缩而没有伸!(但是那道题是什么来着)

        秩等于非零特征值的个数吗。我们可以对此做如下理解:有0特征值,说明有非零向量a,使得Aa=𝝀a=0。换句话说,一个非零的向量被这个变换A零化了,这是不能接受的,因为你这个变换 抹平了至少一个维度\丢失了信息\不可逆!

        正惯性指数p=正特征值的个数。这个我们可以理解为:对一个线性变换A的矩阵A做合同变换,得到的新矩阵CtAC对应的线性变换CtAC,会保留其对角化后对于几个基是同向伸缩,几个基是反向伸缩的信息,换句话说,合同变换只关心你这个变换对于基是正向伸缩还是反向伸缩,而不关心具体的伸缩系数(所以合同变换前后特征值的数值可能会变,但正负个数不变),它关心的是一个比较仿射(?)或者说比较flexible的性质;而对A做相似变换是保特征值的,也就是说相似变换是严格关心线性变换A对于基的伸缩系数的具体数值的。所以合同之于相似 就有点像 向量共线之于向量相等,也有点像 拓扑之于度量?(都是一软一硬的结构)

        正惯性指数就是正特征值的个数,也就是A被对角化时,它正向伸缩的基向量的个数。为什么只要存在反向伸缩的向量,A对应的二次型一定不正定呢?因为我只需取a是被反向伸缩的向量,那么它a和Aa显然成平角,aTAa就为负了。感觉上,我们可以用正特征值a对应的特征向量x,和负特征值b对应的特征向量y,张成一个空间,并通过调整u和v,来组合出ux+vy,使得ux+vy与A(ux+vy)成任意角度。

        接下来来到了实对称矩阵A正定⟺A顺序主子式全>0,之前是完全无法理解这个结论的,但是学了一点解析几何之后就懂了什么是顺序主子式。在解析几何中,我们曾经把一个二元二次方程的齐二次成分拿出来,作为一个矩阵,它的行列式是一个二次曲线的不变量。但其实哪里有什么不齐次!都是齐次的!,二元二次曲线方程看起来不齐次,是因为有一个z被取成1了。所以什么叫顺序主子式呢,n级矩阵A的k级顺序主子式对应的k元二次型其实就是A对应的n元二次型去掉了所有含xk+1…xn的项,或者说令xk+1~xn都是0了。换句话说,这个定理就是告诉我们:关于x1~xn正定,大致可以描述成关于x1~xk正定,k从1到n。但是描述的时候用的是比x1~xk正定更弱的k级主子式>0,但不影响我们来理解这个定理。并且我们建立了如下理解:顺序主子式对应的二次型,是原矩阵的二次型的子二次型(缺项二次型)。

正定和半正定的区别在于秩。

三个量,正惯性指数p,秩r,阶数n。我们严格有p≤r≤n。当俩等号都取等,为正定;当第一个等号取等,为半正定。半正定相当于说:凡是系数不为0的项,我都给你把系数弄成正的了,但是不保证是满秩哦。所以会有一些向量在缺的那个维度上取1,在别的维度取0,也能使得二次型为0。而正定二次型的满秩就保证了取不到这样缺少的维度,从而没有0以外的向量被二次型零化。

在半正定的情形下就允许了 特征值为0,换句话说允许了矩阵不可逆。半正定等价于主子式都非负,但是正定等价于顺序主子式非负。(从证明过程中理解区别)

何塞矩阵(知乎)

A正定 充分必要条件是 存在可逆实对称矩阵C,使得A=C²。

6.3后面的题好难

5.5的代数重数几何重数;

正交矩阵的实特征值一定是±1,可以理解为:正交变换不涉及伸缩,只有转轴或对轴的定向做调整,所以特征值的绝对值一定是1。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值