从语言模型的hidden_states到logit,经历了什么变换

以gpt2为例

导入模型,并推理。

from transformers import GPT2Tokenizer, GPT2LMHeadModel, GPT2Config
import torch
config = GPT2Config.from_pretrained("../model/gpt2")
model = GPT2LMHeadModel.from_pretrained("../model/gpt2")
tokenizer = GPT2Tokenizer.from_pretrained("../model/gpt2")


prompt = "I thought this movie was glorious, I appreciated it. Conclusion: This movie is"
inputs = tokenizer(prompt, return_tensors="pt")
output = model(inputs.input_ids, output_hidden_states=True)

output输出的内容是什么

查看modeling_gpt2的源代码,在import部分:

from ...modeling_outputs import (
    BaseModelOutputWithPastAndCrossAttentions,
    CausalLMOutputWithCrossAttentions,
    QuestionAnsweringModelOutput,
    SequenceClassifierOutputWithPast,
    TokenClassifierOutput,
)

再进一步查看modeling_outputs.py文件,可以看到output的类

class CausalLMOutputWithCrossAttentions(ModelOutput):
    """
    Base class for causal language model (or autoregressive) outputs.

    Args:
        loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
            Language modeling loss (for next-token
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值