- 博客(12)
- 收藏
- 关注
原创 主成分分析PCA
1、PCA容易收到离群点的影响2、PCA和SVD(奇异值分解)的关联SVD:最右的矩阵V,即为PCA的主成分RPCA需要先求出协方差矩阵,计算量较大SVD优点:一部分实现可不求出协方差矩阵C也可求出右奇异矩阵V,计算量降低。
2024-01-01 15:10:43 658
原创 支持向量机SVM——线性分类
支持向量机(SVM):二分类算法模型,它的目的是寻找一个超平面来对样本进行分割,分割的原则是间隔最大化,最终转化为一个凸二次规划问题来求解。用于解决模式识别领域中的数据分类问题,属于有监督学习算法。优点:当数据集较小时,分类效果优于神经网络。能造出最大间距的决策边界从而提高分类算法的鲁棒性。
2023-12-17 16:49:33 1164 1
原创 Logisitic回归——房价预测
今天给大家带来的是线性回归中的一种经典方法——logistic(逻辑斯蒂)回归,并用该方法解决房价比例的问题logistic回归——Logistic回归是统计学习中的经典分类方法,属于对数线性模型,所以也被称为对数几率回归。虽然是叫做回归,但其实这是一种分类算法,Logistic回归是一种线性分类器,针对的是线性可分问题。根据现有的数据对分类边界线建立回归公式,以此进行分类。
2023-11-26 20:25:30 1682 2
原创 朴素贝叶斯——垃圾邮件分类
垃圾邮件是否一直困扰着你,贝叶斯公式,给予你求得这是否为垃圾文件的概率,减少你打开才发现这是垃圾的烦恼!可作出英文文档分类,下次会努力实现中文分类C_%7Bi%7Dlnb。
2023-11-12 22:26:41 1948 3
原创 P-R曲线绘制 *鸢尾花
不同的阈值会导致精确率和召回率的变化,相应地,PR曲线会在precision-recall空间中绘制出各个阈值对应的点。SVM的目标是找到一个超平面,使得不同类别的样本点最大化到该超平面的距离。精确率:预测为正类的数据中实际为正类的比例,公式为:Precision = TP / (TP + FP),其中TP表示真正例,FP表示假正例。此处用的分类器为SVM分类器,SVM的主要思想是找到一个最优的超平面来分离数据,使得两个不同类别的样本点到该超平面的距离最大化。P—R曲线真好玩,下次还要玩~
2023-10-23 22:45:44 829
原创 KNN——鸢尾花识别
KNN分类算法的思想非常简单,就是k个最近邻多数投票的思想,关键就是在给定的距离量度下快速找到预测实例的最近的k个临近值常用的距离量度方式包括:闵可夫斯基距离、欧氏距离、曼哈顿距离、切比雪夫距离、余弦距离优点:精度高、对异常值不敏感、无数据输入假定缺点:计算复杂度高、空间复杂度高。
2023-10-09 23:32:48 434 1
原创 深度学习笔记(二)
文章目录 前言 一、感知机 二、卷积神经网络 前言提示:本文关于深度深入学习一、感知机1)感知机是一个接收多个输入,输出单个输出的算法。一个N维空间。2)感知机可类似当人体的神经元理解。——根据输入值比例不同找到不同权重求和输出值来判断是什么物体感知机模型(神经元感知过程):f(x)=sign(w*x+b)先对+1与-1进行定义再进行计算判断。x>=0→f(x)= +1;x<0→f(x)= -1有一系列.
2021-11-27 13:51:23 493
原创 一、深度学习笔记(一)
文章目录前言 一、机器学习 二、分类与回归问题 三、超参数 四、网络搭建 前言前言本文主要是记录人工智能学习的第一堂课的学习成果。一、机器学习机器学习是利用数据形成模型,通过模型对规律进行预测的一种方法。(有标签:监督学习 无标签:无监督学习)二、分类与回归问题分类:离散变量很明显能分辨出两个不同的区块,从而辨认所需答案回归:连续变量预测一个值,能形成一条连续的回归方程从而预测规律两者本质上都是通过映射关...
2021-11-13 14:06:23 1912
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人