01背包空间优化详解

01背包

有 N件物品和一个容量是 V的背包。每件物品只能使用一次。
第 i 件物品的体积是 vi,价值是 wi。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。

输入格式第一行两个整数,N,V,用空格隔开,分别表示物品数量和背包容积。
接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 件物品的体积和价值。

输出格式
输出一个整数,表示最大价值。

数据范围
0<N,V≤1000

0<vi,wi≤1000
输入样例
4 5
1 2
2 4
3 4
4 5
输出样例:
8

朴素写法

#include <iostream>
using namespace std;

const int N = 1e3 + 10;
int f[N][N];
int v[N], w[N];
int n, m;

int main()
{
    cin>>n>>m;
    
    for(int i = 1; i <= n; i++) cin>>v[i]>>w[i];
    
    for(int i = 1; i <= n; i++)
    {
        for(int j = 0; j <= m; j++)
        {
            f[i][j] = f[i -1][j];
            if(j >= v[i]) f[i][j] = max(f[i][j],f[i - 1][j - v[i]] + w[i]);
        }
    }
    
    cout<<f[n][m];
    return 0;
}

朴素写法分析

在这里插入图片描述
根据这张图,我们一步步分析。
1.状态表示:
这里的状态表示 f(i,j) :在前 i 个物品里选出质量不超过 j 的最大价值

2.状态计算:
这里我们考虑 f[i][j] 如何计算,通常在 dp 问题里,f[i][j] 可以使用 f[i-1][j]这类前面已经计算的结果来表示。
通过上图我们知道, 对于第 i 个物品而言, 有两种状态,一种是不选(等价于 f[i-1] [ j ]),一种是选(等价于 f[ i ][ j ])。我们取最大值就行了。
其实这里还有一个问题, 我们不能直接求出 第二种选 (f[ i ] [ j ]),所以这里需要曲线救国,其实我们的 f[ i ][ j ] 等价于 f[ i - 1] [ j - v[i] ] + w[i].

综上所述:f[ i ] [j ] = max(f[i - 1][ j ] , f[ i - 1] [ j - v[i] ] + w[i])

 for(int i = 1; i <= n; i++)
    {
        for(int j = 0; j <= m; j++)
        {
            f[i][j] = f[i -1][j];// 编号1
            if(j >= v[i]) f[i][j] = max(f[i][j],f[i - 1][j - v[i]] + w[i]);//编号 2
        }
    }

我们枚举每一种 i 和 j 的情况,用我们得到的公式更新,这里说一下编号1跟编号2这样写的原因
当背包装不下第 i 个物品的时候(j < v[i]) f[i][j] = f[i -1][j];(编号1),
当背包能装下第 i 个物品的时候(j >= v[i]) f[i][j] = max(f[i][j],f[i - 1][j - v[i]] + w[i]);(编号 2)

空间优化写法

其实空间优化写法就是对代码进行一个等价变形

#include <iostream>
using namespace std;

const int N = 1e3 + 10;
int f[N];
int v[N], w[N];
int n, m;

int main()
{
    cin>>n>>m;
    
    for(int i = 1; i <= n; i++) cin>>v[i]>>w[i];
    
    for(int i = 1; i <= n; i++)
    {
        for(int j = m; j >= v[i]; j--)
        {
             f[j] = max(f[j],f[j - v[i]] + w[i]);
        }
    }
    
    cout<<f[m];
    return 0;
}

这里分几步

无脑删除一维

这是原代码

#include <iostream>
using namespace std;

const int N = 1e3 + 10;
int f[N][N];
int v[N], w[N];
int n, m;

int main()
{
    cin>>n>>m;
    
    for(int i = 1; i <= n; i++) cin>>v[i]>>w[i];
    
    for(int i = 1; i <= n; i++)
    {
        for(int j = 0; j <= m; j++)
        {
            f[i][j] = f[i -1][j];
            if(j >= v[i]) f[i][j] = max(f[i][j],f[i - 1][j - v[i]] + w[i]);
        }
    }
    
    cout<<f[n][m];
    return 0;
}

无脑去掉一维(这里对去掉的做标记)

#include <iostream>
using namespace std;

const int N = 1e3 + 10;
int f[N];//int f[N][N];
int v[N], w[N];
int n, m;

int main()
{
    cin>>n>>m;
    
    for(int i = 1; i <= n; i++) cin>>v[i]>>w[i];
    
    for(int i = 1; i <= n; i++)
    {
        for(int j = 0; j <= m; j++)
        {
            f[j] = f[j];//f[i][j] = f[i -1][j];  1
            if(j >= v[i]) f[j] = max(f[j],f[j - v[i]] + w[i]); //2
            //   if(j >= v[i]) f[i][j] = max(f[i][j],f[i - 1][j - v[i]] + w[i]);
        }
    }
    
    cout<<f[m];//cout<<f[n][m];
    return 0;
}

考虑简化代码、和二维对比

1.在1处是一个恒等式,和二维对比,程序先算右边,发现这个j 是以前的j,也就是 i - 1 的 j,所以这里于二维相等。

            f[j] = f[j];//f[i][j] = f[i -1][j];  1

但是又由于这里的代码 f[j] = f[j] ,这是一个恒等式,所以可以省去

2.在2处我们发现 if(j >= v[i])这里可以优化,我们发现只有当 j >= v[i]时我们才会更新 f[i][j],也就是说,当 j 的范围是 0 -- v[i] - 1我们的 f[i][j]是不会更新的,那么我们直接把 j 从 v[i] 开始枚举,那么这个判断也能省

 for(int j = v[i]; j <= m; j++)
        {
             f[j] = max(f[j],f[j - v[i]] + w[i]); //2
            //   if(j >= v[i]) f[i][j] = max(f[i][j],f[i - 1][j - v[i]] + w[i]);
        }

3.接下来我们考虑删除一维后,代码是否等价

 f[j] = max(f[j],f[j - v[i]] + w[i]); //2
 // 等价      等价    不等价

其实这里的 f[j - v[i]] + w[i]等价于 f[i][j - v[i]] + w[i], 但是我们要一个式子等价于f[i-1][j - v[i]] + w[i],其实我们只需要把 j 的更新颠倒就行了

 for(int j = m; j >= v[i] ; j--)
        {
            f[j] = max(f[j],f[j - v[i]] + w[i]);
        }

code

#include <iostream>
using namespace std;

const int N = 1e3 + 10;
int f[N];
int v[N], w[N];
int n, m;

int main()
{
    cin>>n>>m;
    
    for(int i = 1; i <= n; i++) cin>>v[i]>>w[i];
    
    for(int i = 1; i <= n; i++)
        for(int j = m; j >= v[i]; j--)
           f[j] = max(f[j],f[j - v[i]] + w[i]);
        
    
    
    cout<<f[m];
    return 0;
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我不会画饼鸭

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值