机器学习
文章平均质量分 87
机器学习
撕得失败的标签
就算累得快成二维码了,扫一扫也能找到那么一丢丢生活里的幽默
展开
-
【机器学习算法导论】监督式学习算法
第二章 监督式学习算法监督学习框架基本假设期望损失经验风险最小化Hoeffding 不等式定理证明泛化性欠拟合过拟合奥卡姆剃刀原则正则化方法模型评估的标准回归与分类回归算法评价指标绝对误差相对误差分类算法评价指标混淆矩阵 (`Confusion matrix`):准确率 (`Accuracy`):分类错误率 (`Classification error`):召回率 (`Recall`)精确率 (`Precision`)ROC 曲线AUC数据集拆分留出法原创 2024-03-19 09:17:43 · 1102 阅读 · 0 评论 -
【神经网络】imshow展示图片报错
也就是说它的每个图像格式是(通道数,宽度,高度),我们需要将其调整为(宽度,高度,通道数)的格式。,输入具有RGB值的图像,输入三维数组参数的格式应该是(高度,宽度,通道数)将图像数据调整为(宽度,高度,通道数)的格式,以便于正确地显示和处理图像。我们可以看一下显示数据信息。对于图像数据,这通常是。下面这段代码如果出现报错。原创 2023-12-18 23:35:51 · 769 阅读 · 0 评论 -
【机器学习】卷积神经网络(CNN)的特征数计算
为了将这些特征图转换为一维向量以输入到全连接层,你需要将特征图的元素“展平”(flatten)。为了将这些特征图转换为一维向量以输入到全连接层,你需要将特征图的元素"展平"在卷积操作过程中,图像与卷积核进行滑动窗口式的乘加运算,这会导致图像尺寸的变化。全连接层的输入和输出维度通常是由网络架构和数据的特性决定的。池化层通常不会改变特征数,但会改变特征图的高度和宽度。继续应用卷积层和池化层,每次更新特征图的尺寸和特征数。网络的最后一层之前的特征图的通道数就是最后的特征数。,即最大池化层的池化窗口的大小为。原创 2023-12-18 23:35:42 · 1301 阅读 · 0 评论 -
Conda 搭建简单的机器学习 Python 环境
Conda是一个开源的包管理系统和环境管理系统,由开发。它最初是为了支持Python的科学计算而创建的,但现在也可以用于其他编程语言。CondaConda可以安装、升级、卸载软件包,并自动处理依赖关系。Conda可以创建、管理和切换虚拟环境,以便在不同的项目中使用不同的软件包版本。Conda支持多种操作系统,包括WindowsmacOS和Linux。Conda是开源的,任何人都可以贡献代码或提出改进意见。Conda使用YAML。原创 2023-12-09 18:47:14 · 679 阅读 · 0 评论 -
【机器学习】集成学习算法之AdaBoost
对求得的新权重进行归一化求出权重分布。首先,是初始化训练数据的权值分布。,这样训练样本集的初始权值分布。选取一个当前误差最低的弱分类器。个基本分类器,并计算弱分类器。,得出训练样本的权重分布。进行归一化求出权重分布。生成第 1 棵决策树。生成第 2 棵决策树。原创 2023-11-27 23:15:49 · 622 阅读 · 0 评论 -
【机器学习】线性模型之逻辑回归
逻辑回归模型是一种常用的统计建模方法,用于处理二元分类问题,即将实例划分为两个类别:正类和负类。它的主要思想是在每个实例上建立一个概率模型,以估计其属于正类的概率。在逻辑回归模型中,首先定义一个非线性的激活函数,如Sigmoid函数,用于处理输入特征向量与权重向量的内积。然后,通过对这些概率进行最大化或最小化来求解模型参数的最佳值。逻辑回归模型的优点是计算简单,解释性强,易于理解。但缺点是容易过拟合,且不能很好地处理多分类问题。因此,通常情况下,需要与其他技术相结合,如正则化和集成学习等,来改善模型。原创 2023-11-27 23:04:27 · 532 阅读 · 0 评论 -
算法评价指标
算法评价指标是用来衡量算法性能的量化指标,是对算法优劣进行评价的重要工具。它是算法研究、算法设计和算法应用的基础之一。算法评价指标通常包括时间复杂度、空间复杂度、准确率、召回率、F1值、ROC曲线、AUC值等。原创 2023-11-24 14:22:04 · 1797 阅读 · 1 评论