最优化方法
文章平均质量分 91
最优化方法
撕得失败的标签
就算累得快成二维码了,扫一扫也能找到那么一丢丢生活里的幽默
展开
-
【最优化方法】对称矩阵的对角化
(3重)带入齐次方程组,得。该方法称为施密特正交化(原创 2024-01-02 08:15:08 · 1325 阅读 · 2 评论 -
【最优化方法】约束最优化问题
二次罚函数方法是一种用于处理约束最优化问题的优化算法,它通过在目标函数中引入二次罚项,将约束问题转化为无约束问题。因为惩罚项是二次的,所以光滑可微,这样可以使用无约束优化技术来求解得罚函数。的邻城内一阶连续可微,如果约束规范条件 (CQ),则违反约束的惩罚项剧烈地增大。处的所有线性化可行方向的集合记为。的计算量很大时,可以选择适当缩小。处的所有可行方向组成的集合记为。处的所有序列可行方向的集合记为。趋于零时,如果约束不可行,即。是问题的局部极小点,设。否则,选择新的罚参数。处的线性化可行方向,原创 2024-01-02 00:02:17 · 2028 阅读 · 0 评论 -
【最优化方法】无约束优化问题(最速下降法、牛顿法、最小二乘)
最速下降法(Steepest Descent Method)是一种基于负梯度方向进行迭代的最优化算法,用于寻找一个函数的最小值。算法的基本思想是从当前点出发,沿着当前点的负梯度方向,以一定的步长(学习率)移动到新的点,重复这个过程直至达到停止条件。在实践中,有一些改进的方法,如共轭梯度法、牛顿法等,可以在某些情况下加速收敛。是共轭转置的关系,同时等于一个标量,所以相等,因此可以合并成一项。最速下降法的优点是简单易理解,容易实现。利用采用精确一维线搜索的最速下降法求解,其中初始点。原创 2024-01-02 00:02:09 · 2766 阅读 · 0 评论 -
【最优化方法】无约束优化问题(函数梯度、下降方向、最优性)
的方向导数,并问在怎样的方向上此方向导数有:(1)最大值;请问这样的下降方向是否同所在点的位置有关?稳定点分为三种类型:极大值点、极小值点、鞍点。维无约束极小化问题,得到解无约束优化问题。的一个严格局部极小点的充分条件是。处的梯度,并在哪些点处梯度为零?并且,下降方向同所在点的位置无关。处的所有下降方向的全体记为。处连续可微,如存在非零向量。的点为稳定点(也称为驻点);处的一个下降方向,在点。时,方向导数达到最大值。时,方向导数达到最小值。我们把一元方程推广到。故满足条件的所有向量。原创 2024-01-01 19:45:49 · 2599 阅读 · 0 评论 -
【最优化方法】精确一维搜索方法
一维线性搜索是在优化算法中常用的一种方法,用于确定在给定搜索方向上的合适步长,使得目标函数在该方向上能够有明显的下降。Newton法(牛顿法)是一种使用二阶导数信息的优化方法,它在一维线性搜索中也可以应用。在牛顿法中,使用二阶导数信息可以更准确地确定搜索步长,因此相较于一些基于一阶导数信息的方法,牛顿法可能在一维搜索中更快地收敛。总的来说,一维线性搜索的 Newton 法是一种有效的优化方法,特别适用于目标函数具有二阶导数信息的情况。需要注意的是,上述步骤中的计算是在一维搜索方向上进行的,因此。原创 2024-01-01 18:55:40 · 1667 阅读 · 0 评论 -
【最优化方法】凸二次优化
其实 $G$ 是对称矩阵,同时也是海森矩阵(`Hessian matrix`):当 $G$ 是正半定时,二次函数 $f(x)$ 是凸函数;当 $G$ 是正定时,二次函数 $f(x)$ 是严格凸函数;当 $G$ 是负正半定时,二次函数 $f(x)$ 是凹函数;当 $G$ 是负定时,二次函数 $f(x)$ 是严格凹函数; 当 $G$ 是不定时,二次函数 $f(x)$ 既不是凸函数,也不是凹函数。原创 2024-01-01 00:24:22 · 1643 阅读 · 0 评论 -
【最优化方法】凸优化基本概念
凸优化问题具有许多重要的性质,使得其在理论和实践中都得到广泛应用。这些性质包括全局最优解的存在性、局部最优解即为全局最优解、凸优化问题的求解算法通常具有高效性和可靠性。在机器学习、信号处理、控制系统设计等领域,凸优化都起到了关键的作用。一个优化问题被称为凸优化问题,如果其目标函数是凸函数,约束集合是凸集。对凸集合进行一些基本运算,如交、并、差等,仍然得到凸集合。同凸函数相对应的是凹函数,一个函数。上的(严格)凹函数,那么。称为凸集,如果对于任意。的直线段上的所有点都在。上的(严格)凸函数。原创 2023-12-31 23:59:32 · 1758 阅读 · 0 评论 -
【最优化方法】矩阵的二次型
矩阵的二次型是一个与矩阵和向量相关的二次多项式。对于一个实数域上的二次型,给定一个n×nn×nn×n的对称矩阵AAA和一个列向量xxxxxx是一个n×1n×1n×1QxxTAxQ(x)=x^TAxQxxTAxQx∑i1n∑j1naijxiyjQxi1∑nj1∑naijxiyj其中aija_{ij}aij是矩阵AAA的元素,表示第iii。原创 2023-12-31 23:57:54 · 3498 阅读 · 0 评论