方盒滤波:
这张图就是一个方盒滤波,所有元素都是1,前面有一个参数,
参数a的作用:如果normalize==true 那么a=1/W*H(也就是滤波器的宽*高分之一),如果normalize==false ,那么a=1(也就是滤波器不进行均值化了)
结果:当normalize=true是,方盒滤波等于均值滤波
方盒滤波API:boxFilter(src,ddepth,ksize,anchor,normalize(默认值为true),borderType)
均值滤波API:blur(src,ksize,anchor,borderType)
#方盒滤波
img=cv.imdecode(np.fromfile(r'图片路径',dtype=np.uint8),1)
new=cv.resize(img,(900,500))
dst=cv.blur(new,(5,5))
cv.imshow('new',new)
cv.imshow('dst',dst)
cv.waitKey(0)
这个运行起来的效果其实和上一篇中的滤波卷积差不多。
本文介绍了方盒滤波(Box Filter)与均值滤波的概念,强调两者在参数normalize为true时等效。方盒滤波通过一个全1的滤波器进行图像平滑,当normalize为true时,滤波器权重会被归一化,实现均值滤波效果。API方面,方盒滤波使用`boxFilter`函数,而均值滤波使用`blur`函数。示例代码展示了在OpenCV中如何应用这两个滤波器,显示了滤波后的图像效果。
138

被折叠的 条评论
为什么被折叠?



