OpenCV的其他几个滤波器(方盒滤波和均值滤波)

本文介绍了方盒滤波(Box Filter)与均值滤波的概念,强调两者在参数normalize为true时等效。方盒滤波通过一个全1的滤波器进行图像平滑,当normalize为true时,滤波器权重会被归一化,实现均值滤波效果。API方面,方盒滤波使用`boxFilter`函数,而均值滤波使用`blur`函数。示例代码展示了在OpenCV中如何应用这两个滤波器,显示了滤波后的图像效果。

方盒滤波:

这张图就是一个方盒滤波,所有元素都是1,前面有一个参数,

参数a的作用:如果normalize==true 那么a=1/W*H(也就是滤波器的宽*高分之一),如果normalize==false ,那么a=1(也就是滤波器不进行均值化了)

结果:当normalize=true是,方盒滤波等于均值滤波

方盒滤波API:boxFilter(src,ddepth,ksize,anchor,normalize(默认值为true),borderType)

均值滤波API:blur(src,ksize,anchor,borderType)

#方盒滤波
img=cv.imdecode(np.fromfile(r'图片路径',dtype=np.uint8),1)
new=cv.resize(img,(900,500))
dst=cv.blur(new,(5,5))
cv.imshow('new',new)
cv.imshow('dst',dst)
cv.waitKey(0)

这个运行起来的效果其实和上一篇中的滤波卷积差不多。

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值