回溯理论
回溯法的效率
回溯的本质是穷举,穷举所有可能,然后选出我们想要的答案,如果想让回溯法高效一些,可以加一些剪枝的操作,但也改不了回溯法就是穷举的本质。
回溯法解决的问题
- 组合问题:N个数里面按一定规则找出k个数的集合
- 切割问题:一个字符串按一定规则有几种切割方式
- 子集问题:一个N个数的集合里有多少符合条件的子集
- 排列问题:N个数按一定规则全排列,有几种排列方式
- 棋盘问题:N皇后,解数独等等
如何理解回溯法
回溯法解决的问题都可以抽象为树形结构,集合的大小就构成了树的宽度,递归的深度就构成了树的深度。
回溯模板
void backtracking(参数) {
if (终止条件) {
存放结果;
return;
}
for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
处理节点;
backtracking(路径,选择列表); // 递归
回溯,撤销处理结果
}
}
77. 组合
回溯
class Solution {
public:
vector<vector<int>> result;
vector<int> path;
void backtracking(int n, int k, int startIndex){
if (path.size() == k){
result.push_back(path);
return;
}
for (int i = startIndex; i <= n; i++){
path.push_back(i);
backtracking(n, k, i + 1);
path.pop_back();
}
}
vector<vector<int>> combine(int n, int k) {
backtracking(n, k, 1);
return result;
}
};
剪枝优化
n = 4,k = 4的话,那么第一层for循环的时候,从元素2开始的遍历都没有意义了。 在第二层for循环,从元素3开始的遍历都没有意义了。
优化过程如下:
-
已经选择的元素个数:path.size();
-
还需要的元素个数为: k - path.size();
-
在集合n中至多要从该起始位置 : n - (k - path.size()) + 1,开始遍历
为什么有个+1呢,因为包括起始位置,我们要是一个左闭的集合。
举个例子,n = 4,k = 3, 目前已经选取的元素为0(path.size为0),n - (k - 0) + 1 即 4 - ( 3 - 0) + 1 = 2。
for (int i = startIndex; i <= n - (k - path.size()) + 1; i++) { // 优化的地方
path.push_back(i); // 处理节点
backtracking(n, k, i + 1);
path.pop_back(); // 回溯,撤销处理的节点
}
216. 组合总和 III
回溯
class Solution {
public:
vector<vector<int>> result;
vector<int> path;
void backtracking(int k, int sum, int targetSum, int startIndex){
if (path.size() == k && sum == targetSum){
result.push_back(path);
return ;
}
for (int i = startIndex; i <= 9; i++){
sum += i;
path.push_back(i);
backtracking(k, sum, targetSum, i + 1);
sum -= i;
path.pop_back();
}
}
vector<vector<int>> combinationSum3(int k, int n) {
backtracking(k, 0, n, 1);
return result;
}
};
剪枝优化
已选元素总和如果已经大于n(图中数值为4)了,那么往后遍历就没有意义了,直接剪掉。
class Solution {
private:
vector<vector<int>> result; // 存放结果集
vector<int> path; // 符合条件的结果
void backtracking(int targetSum, int k, int sum, int startIndex) {
if (sum > targetSum) { // 剪枝操作
return;
}
if (path.size() == k) {
if (sum == targetSum) result.push_back(path);
return; // 如果path.size() == k 但sum != targetSum 直接返回
}
for (int i = startIndex; i <= 9 - (k - path.size()) + 1; i++) { // 剪枝
sum += i; // 处理
path.push_back(i); // 处理
backtracking(targetSum, k, sum, i + 1); // 注意i+1调整startIndex
sum -= i; // 回溯
path.pop_back(); // 回溯
}
}
public:
vector<vector<int>> combinationSum3(int k, int n) {
result.clear(); // 可以不加
path.clear(); // 可以不加
backtracking(n, k, 0, 1);
return result;
}
};
17. 电话号码的字母组合
class Solution {
private:
const string letterMap[10] = {
"", // 0
"", // 1
"abc", // 2
"def", // 3
"ghi", // 4
"jkl", // 5
"mno", // 6
"pqrs", // 7
"tuv", // 8
"wxyz", // 9
};
public:
vector<string> result;
string s;
void backtracking(const string& digits, int index) {
if (index == digits.size()) {
result.push_back(s);
return;
}
int digit = digits[index] - '0'; // 将index指向的数字转为int
string letters = letterMap[digit]; // 取数字对应的字符集
for (int i = 0; i < letters.size(); i++) {
s.push_back(letters[i]); // 处理
backtracking(digits, index + 1); // 递归,注意index+1,一下层要处理下一个数字了
s.pop_back(); // 回溯
}
}
vector<string> letterCombinations(string digits) {
s.clear();
result.clear();
if (digits.size() == 0) {
return result;
}
backtracking(digits, 0);
return result;
}
};