算法刷题day29|动态规划:62. 不同路径、63. 不同路径 II、343. 整数拆分、96. 不同的二叉搜索树

62. 不同路径

初始化:dp[i][0]一定都是1,因为从(0, 0)的位置到(i, 0)的路径只有一条,那么dp[0][j]也同理。

递推公式:要求dp[i][j],只能有两个方向来推导出来,即dp[i - 1][j] 和 dp[i][j - 1]。

dp[i][j] = dp[i - 1][j] + dp[i][j - 1]

class Solution {
public:
    int uniquePaths(int m, int n) {
        vector<vector<int>> dp(m, vector<int>(n, 0));
        for (int i = 0; i < m; i++) {
            dp[i][0] = 1;
        }
        for (int j = 0; j < n; j++) {
            dp[0][j] = 1;
        }

        for (int i = 1; i < m; i++){
            for (int j = 1; j < n; j++){
                dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
            }
        }

        return dp[m - 1][n - 1];
    }
};

 63. 不同路径 II

初始化:因为从(0, 0)的位置到(i, 0)的路径只有一条,所以dp[i][0]一定为1,dp[0][j]也同理。

但如果(i, 0) 这条边有了障碍之后,障碍之后(包括障碍)都是走不到的位置了,所以障碍之后的dp[i][0]应该还是初始值0。

 

递推公式:要求dp[i][j],只能有两个方向来推导出来,即dp[i - 1][j] 和 dp[i][j - 1]。

dp[i][j] = dp[i - 1][j] + dp[i][j - 1]

class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
        int wsize = obstacleGrid.size();    // 横
        int csize = obstacleGrid[0].size(); // 纵
        vector<vector<int>> dp(wsize, vector<int>(csize, 0));

        if (obstacleGrid[0][0] == 1 || obstacleGrid[wsize - 1][csize - 1]) {
            return 0;
        }

        for (int i = 0; i < wsize && obstacleGrid[i][0] == 0; i++) {
            dp[i][0] = 1;
        }
        for (int j = 0; j < csize && obstacleGrid[0][j] == 0; j++) {
            dp[0][j] = 1;
        }

        for (int i = 1; i < wsize; i++) {
            for (int j = 1; j < csize; j++) {
                if (obstacleGrid[i][j] == 1) {
                    continue;
                }
                dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
            }
        }

        return dp[wsize - 1][csize - 1];
    }
};

 343. 整数拆分

递推公式:可以从1遍历j,然后有两种渠道得到dp[i]。一个是j * (i - j) 直接相乘。一个是j * dp[i - j],相当于是拆分(i - j)。dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j));

确定遍历顺序:因为拆分一个数n 使之乘积最大,那么一定是拆分成m个近似相同的子数相乘才是最大的。那么 j 遍历,只需要遍历到 n/2 就可以,后面就没有必要遍历了,一定不是最大值。 

class Solution {
public:
    int integerBreak(int n) {
        vector<int> dp(n + 1);
        dp[2] = 1;
        for (int i = 3; i <= n ; i++) {
            for (int j = 1; j <= i / 2; j++) {
                dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j));
            }
        }
        return dp[n];
    }
};

 96. 不同的二叉搜索树

举例

dp[3],就是 元素1为头结点搜索树的数量 + 元素2为头结点搜索树的数量 + 元素3为头结点搜索树的数量

元素1为头结点搜索树的数量 = 右子树有2个元素的搜索树数量 * 左子树有0个元素的搜索树数量

元素2为头结点搜索树的数量 = 右子树有1个元素的搜索树数量 * 左子树有1个元素的搜索树数量

元素3为头结点搜索树的数量 = 右子树有0个元素的搜索树数量 * 左子树有2个元素的搜索树数量

有2个元素的搜索树数量就是dp[2]。

有1个元素的搜索树数量就是dp[1]。

有0个元素的搜索树数量就是dp[0]。

所以dp[3] = dp[2] * dp[0] + dp[1] * dp[1] + dp[0] * dp[2]

递推公式:dp[i] += dp[以j为头结点左子树节点数量] * dp[以j为头结点右子树节点数量]

j相当于是头结点的元素,从1遍历到i为止。

所以递推公式:dp[i] += dp[j - 1] * dp[i - j]; ,j-1 为j为头结点左子树节点数量,i-j 为以j为头结点右子树节点数量

class Solution {
public:
    int numTrees(int n) {
        vector<int> dp(n + 1);
        dp[0] = 1;
        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= i; j++) {
                dp[i] += dp[j - 1] * dp[i - j];
            }
        }
        return dp[n];
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值