机器学习:朴素贝叶斯算法

目录

朴素贝叶斯原理

先验概率

后验概率

生成式模型(Generative Model)

判别式模型(Discriminative Model)

朴素贝叶斯分类器

MAP 分类准则:

拉普拉斯修正

朴素贝叶斯应用垃圾邮件过滤

总结:


朴素贝叶斯原理

朴素贝叶斯算法基于贝叶斯定理和特征条件独立假设

特征条件独立:假设X的n个特征在类确定的条件下都是条件独立的。
贝叶斯定理:贝叶斯定理是关于随机事件A和B的条件概率(或边缘概率)的一则定理。已知两个独立事件A和B,事件B发生的前提下,事件A发生的概率可以表示为P(A|B)。

先验概率:

P(cj)代表还没有训练模型之前,P(cj)常被称为cj的先验概率(prior probability) ,它反映了cj的概率分布,该分布独立于样本,用样例中属于cj的样例数|cj|比上总样例数|D|来近似。

                                                        ​​​​​​​        

后验概率:

给定数据样本x时cj成立的概率P(cj  | x )被称为后验概率(posterior probability),因为它反映了在看到数据样本 x后 cj 成立的置信度。观测到 x 后对结果 y 的估计,列如

西瓜好坏的概率和其属性有关,当观测到西瓜样本(属性取值)x时,它为好瓜/坏瓜概率是多少

        ​​​​​​​        ​​​​​​​    为    ​​​​​​​        ​​​​​​​        ​​​​​​​        

生成式模型(Generative Model):

由数据学习联合概率密度分布P(x,y),然后生成条件概率分布P(y|x),或者直接学得一个决策函数 Y=f(x),用作模型预测。

判别式模型(Discriminative Model):

由数据直接学习决策函数f(x)或者条件概率分布P(y|x)作为预测。

朴素贝叶斯分类器

MAP 分类准则:

最大后验概率估计(Maximum A Posteriori, MAP)是一种常用的参数估计方法;利用经验数据获得对未观测量的点态估计,概率是已知模型和参数(生成数据的过程),推数据(结果)。统计是已知数据(结果),推模型和参数(生成数据的过程)。

x 属于类别 c* 的概率:​​​​​​​

利用 MAP 准则贝叶斯准则转化

朴素贝叶斯分类器(Naïve Bayes Classifier)采用了“属性条件独立性假设”,即每个属性独立地对分类结果发生影响。记P(C=c|X=x)为P(c|x),基于属性条件独立性假设,贝叶斯公式可以重写为如下

d为属性数目,x_i 为 x 在第i个属性上的取值

拉普拉斯修正

训练集上,很多样本的取值可能并不在其中,但是这不并代表这种情况发生的概率为0,因为未被观测到,并不代表出现的概率为0 。为了避免其他属性携带的信息,被训练集中未出现的属性值“抹去”,在估计概率值时通常要进行“拉普拉斯修正”:拉普拉斯修正的含义是,在训练集中总共的分类数,用 N 表示;di 属性可能的取值数用 Ni 表示,因此原来的先验概率 P(c) 的计算公式:

朴素贝叶斯应用垃圾邮件过滤

(1)收集数据:提供文本文件。
(2)准备数据:将文本文件解析成词条向量。
(3)分析数据:检查词条确保解析的正确性。
(4)训练算法:计算不同的独立特征的条件概率。
(5)测试算法:计算错误率。
(6)使用算法:构建一个完整的程序对一组文档进行分类。

代码实现:





import random
import re
import numpy as np

def trainNB0(trainMatrix,trainCategory):
    numTrainDocs = len(trainMatrix) # 计算训练的文档数目
    numWords = len(trainMatrix[0]) # 计算每篇文档的词条数
    pAbusive = sum(trainCategory)/float(numTrainDocs) # 文档属于侮辱类的概率
    p0Num = np.ones(numWords); p1Num = np.ones(numWords) # 创建numpy.ones数组,词条出现数初始化为1,拉普拉斯平滑
    p0Denom = 2.0; p1Denom = 2.0 # 分母初始化为2,拉普拉斯平滑
    for i in range(numTrainDocs):
        if trainCategory[i] == 1: # 统计属于侮辱类的条件概率所需的数据,即P(w0|1),P(w1|1),P(w2|1)···
            p1Num += trainMatrix[i]
            p1Denom += sum(trainMatrix[i])
        else: # 统计属于非侮辱类的条件概率所需的数据,即P(w0|0),P(w1|0),P(w2|0)···
            p0Num += trainMatrix[i]
            p0Denom += sum(trainMatrix[i])
    p1Vect = np.log(p1Num/p1Denom) # 取对数,防止下溢出          
    p0Vect = np.log(p0Num/p0Denom)          
    return p0Vect, p1Vect, pAbusive # 返回属于侮辱类的条件概率数组,属于非侮辱类的条件概率数组,文档属于侮辱类的概率
 



def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
    p1 = sum(vec2Classify * p1Vec) + np.log(pClass1) # 对应元素相乘。logA * B = logA + logB,所以这里加上log(pClass1)
    p0 = sum(vec2Classify * p0Vec) + np.log(1.0 - pClass1)
    if p1 > p0:
        return 1
    else: 
        return 0
    
    
def createVocabList(dataSet):
    vocabSet = set([]) # 创建一个空的不重复列表
    for document in dataSet:				
        vocabSet = vocabSet | set(document) # 取并集
    return list(vocabSet)
 
def setOfWords2Vec(vocabList, inputSet):
    returnVec = [0] * len(vocabList) # 创建一个其中所含元素都为0的向量
    for word in inputSet: # 遍历每个词条
        if word in vocabList: # 如果词条存在于词汇表中,则置1
            returnVec[vocabList.index(word)] = 1
        else: print("the word: %s is not in my Vocabulary!" % word)
    return returnVec # 返回文档向量
 
def bagOfWords2VecMN(vocabList, inputSet):
    returnVec = [0] * len(vocabList) # 创建一个其中所含元素都为0的向量
    for word in inputSet: # 遍历每个词条
        if word in vocabList: # 如果词条存在于词汇表中,则计数加一
            returnVec[vocabList.index(word)] += 1
    return returnVec # 返回词袋模型
 
def textParse(bigString): # 将字符串转换为字符列表
    
    # 使用\W 或者\W+ 都可以将字符数字串分割开,产生的空字符将会在后面的列表推导式中过滤掉
    listOfTokens = re.split(r'\W+', bigString) # 将特殊符号作为切分标志进行字符串切分,即非字母、非数字
    return [tok.lower() for tok in listOfTokens if len(tok) > 2] # 除了单个字母,例如大写的I,其它单词变成小写
 
def spamTest():
    docList = []; classList = []; fullText = []
    
    for i in range(1, 26): # 遍历25个txt文件
        wordList = textParse(open('email/spam/%d.txt' % i, 'r').read()) # 读取每个垃圾邮件,并字符串转换成字符串列表
        docList.append(wordList)
        fullText.append(wordList)
        classList.append(1) # 标记垃圾邮件,1表示垃圾文件
        wordList = textParse(open('email/ham/%d.txt' % i, 'r').read()) # 读取每个非垃圾邮件,并字符串转换成字符串列表
        docList.append(wordList)
        fullText.append(wordList)
        classList.append(0) # 标记非垃圾邮件,1表示垃圾文件    
    vocabList = createVocabList(docList) # 创建词汇表,不重复
    trainingSet = list(range(50)); testSet = [] # 创建存储训练集的索引值的列表和测试集的索引值的列表                        
    
    for i in range(10): # 从50个邮件中,随机挑选出40个作为训练集,10个做测试集
        randIndex = int(random.uniform(0, len(trainingSet))) # 随机选取索引值
        testSet.append(trainingSet[randIndex]) # 添加测试集的索引值
        del(trainingSet[randIndex]) # 在训练集列表中删除添加到测试集的索引值
    trainMat = []; trainClasses = [] # 创建训练集矩阵和训练集类别标签系向量             
    
    for docIndex in trainingSet: # 遍历训练集
        trainMat.append(setOfWords2Vec(vocabList, docList[docIndex])) # 将生成的词集模型添加到训练矩阵中
        trainClasses.append(classList[docIndex]) # 将类别添加到训练集类别标签系向量中
    p0V, p1V, pSpam = trainNB0(np.array(trainMat), np.array(trainClasses)) # 训练朴素贝叶斯模型
    errorCount = 0 # 错误分类计数
    
    for docIndex in testSet: # 遍历测试集
        wordVector = setOfWords2Vec(vocabList, docList[docIndex]) # 测试集的词集模型
        if classifyNB(np.array(wordVector), p0V, p1V, pSpam) != classList[docIndex]: # 如果分类错误
            errorCount += 1 # 错误计数加1
            print('classification error',docList[docIndex])
    print('the error rate is:%.2f%%' % (float(errorCount) / len(testSet) * 100))








docList = []; classList = []; fullText = []

for i in range(1, 26): # 遍历25个txt文件
    wordList = textParse(open('F:/Ch04/email/spam/%d.txt' % i, 'r').read()) # 读取每个垃圾邮件,并字符串转换成字符串列表
    docList.append(wordList)
    fullText.append(wordList)
    classList.append(1) # 标记垃圾邮件,1表示垃圾文件
    wordList = textParse(open('F:/Ch04/email/ham/%d.txt' % i, 'r').read()) # 读取每个非垃圾邮件,并字符串转换成字符串列表
    docList.append(wordList)
    fullText.append(wordList)
    classList.append(0) # 标记非垃圾邮件,1表示垃圾文件    
vocabList = createVocabList(docList) # 创建词汇表,不重复
trainingSet = list(range(50)); testSet = [] # 创建存储训练集的索引值的列表和测试集的索引值的列表                        

for i in range(10): # 从50个邮件中,随机挑选出40个作为训练集,10个做测试集
    randIndex = int(random.uniform(0, len(trainingSet))) # 随机选取索引值
    testSet.append(trainingSet[randIndex]) # 添加测试集的索引值
    del(trainingSet[randIndex]) # 在训练集列表中删除添加到测试集的索引值
trainMat = []; trainClasses = [] # 创建训练集矩阵和训练集类别标签系向量             

for docIndex in trainingSet: # 遍历训练集
    trainMat.append(setOfWords2Vec(vocabList, docList[docIndex])) # 将生成的词集模型添加到训练矩阵中
    trainClasses.append(classList[docIndex]) # 将类别添加到训练集类别标签系向量中
p0V, p1V, pSpam = trainNB0(np.array(trainMat), np.array(trainClasses)) # 训练朴素贝叶斯模型
errorCount = 0 # 错误分类计数

for docIndex in testSet: # 遍历测试集
    wordVector = setOfWords2Vec(vocabList, docList[docIndex]) # 测试集的词集模型
    if classifyNB(np.array(wordVector), p0V, p1V, pSpam) != classList[docIndex]: # 如果分类错误
        errorCount += 1 # 错误计数加1
        print('分类错误的测试集:',docList[docIndex])
print('错误率:%.2f%%' % (float(errorCount) / len(testSet) * 100))






总结:

朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法。对于给定的训练数据集,首先基于特征条件独立假设学习输入输出的联合概率分布;然后基于此模型,对给定的输入x,利用贝叶斯定理求出后验概率最大的输出y。

两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Bayesian Model,NBM)。决策树模型相比,朴素贝叶斯分类器(Naive Bayes Classifier 或 NBC)发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率。同时,NBC模型所需估计的参数很少,对缺失数据不太敏感,算法也比较简单。

朴素贝叶斯优缺点:
优点:在数据较少的情况下仍然有效,可以处理多类别问题
缺点:对于输入数据的准备方式较为敏感,由于朴素贝叶斯的“特征条件独立”特点,所以会带来一些准确率上的损失

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值