【数据结构与算法】二叉树的遍历

二叉树的遍历

二叉树的遍历是指按照某条搜索路径访问树中的每个结点,使得每个结点均被访问且仅访问一次。

由二叉树的定义可知,遍历一棵二叉树要决定根节点N、左子树L、右子树R的访问顺序。依据从左往右的原则,常见的遍历顺序有先序遍历(NLR)、中序遍历(LNR)、后序遍历(LRN)。

先序遍历

先序遍历是指对于任意结点,先访问它自身,再访问它的左子树,最后访问它的右子树。

举个🌰

在这里插入图片描述

按照先序遍历的顺序,访问这颗完全二叉树,它的遍历顺序是:1 2 4 8 9 5 10 11 3 6 12 7

递归实现

// C++

class TreeNode{
    // 次数省略数据域

    TreeNode *lchild, *rchild;  // 左右孩子指针
}

void visit(TreeNode *node){
    // 访问操作
}

void preOrder(TreeNode *node){
    if(node == nullptr) return;

    visit(node);
    preOrder(node->lchild);
    preOrder(node->rchild);
}

非递归实现

// C++

#include <stack>

void preOrder(TreeNode *node){
   std::stack<TreeNode> s;
   TreeNode *p = node;
   while(p != nullptr || !s.empty()){
        if(p == nullptr){
            *p = s.top();
            s.pop();
            p = p->rchild;
        }else{
            visit(p);  // 入栈前访问
            s.push(*p);
            p = p->lchild;
        }
   }
}

中序遍历

中序遍历是指对于任意结点,先访问它的左子树,再访问它自身,最后访问它的右子树。

举个🌰

在这里插入图片描述

按照中序遍历的顺序,访问这颗完全二叉树,它的遍历顺序是:8 4 9 2 10 5 11 1 12 6 3 7

递归实现

// C++

void inOrder(TreeNode *node){
    if(node == nullptr) return;

    inOrder(node->lchild);
    visit(node);
    inOrder(node->rchild);
}

非递归实现

// C++

#include <stack>

void inOrder(TreeNode *node){
    std::stack<TreeNode> s;
    TreeNode *p = node;
    while(p != nullptr || !s.empty()){
        if(p == nullptr){
            *p = s.top();
            s.pop();
            visit(p); // 出栈时访问
            p = p -> rchild;
        }else{
            s.push(*p);
            p = p->lchild;
        }
   }
}

后序遍历

后序遍历是指对于任意结点,先访问它的左子树,再访问它的右子树,最后访问它自身。

举个🌰

在这里插入图片描述

按照后序遍历的顺序,访问这颗完全二叉树,它的遍历顺序是:8 9 4 10 11 5 2 12 6 7 3 1

递归实现

// C++

void postOrder(TreeNode *node){
    if(node == nullptr) return;

    postOrder(node->lchild);
    postOrder(node->rchild);
    visit(node);
}

非递归实现

// C++

#include <stack>

void postOrder(TreeNode *node){
    std::stack<TreeNode> s;
    TreeNode *p = node;

    TreeNode *last_r;

    while(p != nullptr || !s.empty()){
        if(p == nullptr){
            *p = s.top();
            if(p->rchild != nullptr && p->rchild != last_r){
                // 右子树存在,且未被访问过,则向右
                p = p->rchild;
            }else{
                // 左右子树都不存在或者都已被访问时,访问自身。
                s.pop();
                visit(p); // 出栈时访问
                last_r = p;
                p = nullptr;
            }
        }else{ // 向左访问到最左边
            s.push(*p);
            p = p->lchild;
        }
   }
}

层次遍历

层次遍历是按照层序,自上而下,从左往右访问。事实上,这和BFS(广度优先搜索)的思想一致。

举个🌰

在这里插入图片描述

按照层次遍历的顺序,访问这颗完全二叉树,它的遍历顺序是:1 2 3 4 5 6 7 8 9 10 11 12

非递归实现

// C++

#include <queue>

void levelOrder(TreeNode *node){
    std::queue<TreeNode> q;
    TreeNode *p;
    q.push(*node);

    while(!q.empty()){
        *p = q.front();
        q.pop();

        visit(p);
        if(p->lchild != nullptr) q.push(*p->lchild);
        if(p->rchild != nullptr) q.push(*p->rchild);
    }
}

全篇至此结束,感谢大家阅读!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值