SWUST OJ#794 最近对问题

目录

题目

思路

方法1:暴力 O(n²)

方法2:换系暴力(玄学AC  复杂度O(n) )

方法3:分治 O(nlogn)

代码

玄学AC法

正常分治法


题目

题目描述

设p1=(x1, y1), p2=(x2, y2), …, pn=(xn, yn)是平面上n个点构成的集合S,设计算法找出集合S中距离最近的点对。

输入

多组测试数据,第一行为测试数据组数n(0<n≤100),每组测试数据由两个部分构成,第一部分为一个点的个数m(0<m≤1000),紧接着是m行,每行为一个点的坐标x和y,用空格隔开,(0<x,y≤100000)

输出

每组测试数据输出一行,为该组数据最近点的距离,保留4为小数。

样例输入

2
2
0 0
0 1
3
0 0
1 1
1 0

样例输出

1.0000
1.0000

思路

首先,用结构体构造点集 (或者stl的pair也行)

#define N 100005
typedef struct {
    double x,y;
}point;
point p[N];

方法1:暴力 O(n²)

暴力法:即枚举所有的两个点,依次算距离比较得出最小值。

double ans=9999999;
for(int i=1;i<n;i++) {
    for(int j=i+1;j<=n;j++) {
        ans=min(ans,sqrt((p[i].x-p[j].x)*(p[i].x-p[j].x)+(p[i].y-p[j].y)*(p[i].y-p[j].y)));
    }
}

方法2:换系暴力(玄学AC  复杂度O(n) )

此方法可能存在一定误差

换系暴力法:时间复杂度O(n)   但实际测试由于排序应该是O(nlogn)

也就是说,重新建系,重新做一个x'轴和y'轴,然后在新的坐标轴内重新对点按照新坐标从小到大排序,然后再进行暴力搜索,这时候由于已经排好序,不需要全部搜完,只需要搜5个就行,所以为O(n)的复杂度。

以下为 证明为什么重新建系后重排就只需搜5个:

重新建立新的坐标轴,在新的坐标中,我们可以发现点的顺序 相比原来发生了改变。

原先是OABCGDEF  现在是BACDOEGF

现在在新的顺序再进行暴力搜索,那么就只需要搜索每个点与往后5个点的距离再比较大小即可

即:只需要求出BA BC BD BO BE AC AD AO AE AF CD CO CE CF CG DO DE DF DG  OE OF OG EF EG FG 。最终结果一定再这里面,就不需要全部都搜索。在原来是要搜n(n-1)次,现在只需(5n-10) 次,就大大的降低了复杂度。

注意:重新建系还是有可能存在最近两个点并非相距5之内,由于建系有无数种,再重新建系即可,总有一次可AC。

根据数学计算,重新建系假设旋转是Θ度,那么新的坐标为:

x ' =x*cosΘ - y*sinΘ

y ' =x*sinΘ + y*cosΘ

以下为证明过程(不需要可跳过)

理论上推出新坐标后,对新坐标排序

//根据新坐标排序
bool cmp(point i,point j) {
    return i.xx<j.xx;
}

for(int i=1;i<=n;i++) {
    cin>>p[i].x>>p[i].y;
    p[i].xx=p[i].x*cos(1)-p[i].y*sin(1); 
    //假设旋转1弧度(57度) 求出新坐标,排序与y没啥关系,就不求yy
}
sort(p+1,p+n+1,cmp);

在新坐标排序后直接暴力搜5个即可

double distance(int i,int j) {
    return sqrt((p[i].x-p[j].x)*(p[i].x-p[j].x)+(p[i].y-p[j].y)*(p[i].y-p[j].y));
}

//暴力往后每次都枚举5个 看似O(n²)实则O(n)
double ans=99999999;
for(int i=1;i<=n;i++) {
for(int j=1;j<=5&&j+i<=n;j++) {
        ans=min(ans,distance(i,i+j));
    }
}

方法3:分治 O(nlogn)

首先由于输入的点是乱的,所以我们必须按照坐标从小到大进行排序。

//对点集排序
bool cmp1(point a,point b) {
    if(a.x==b.x) {
        return a.y<b.y;
    }
    else return a.x<b.x;
}

由于暴力枚举实在太多,我们采用二分,把原来的点集分成左右两部分,并求出左右两边最小的距离,然后总的最小距离:dis=min(disleft,disright)

你问左右两边最小距离的dis怎么求?那重复此过程,左右两边再次砍成两半呀。

一直重复下去,可在O (logn) 的复杂度内求出最小的dis

//left,right代表是第几个点
double merge(int left,int right) {
    if(left==right) return 99999999; //表示同一个点,直接返回一个无效值
    if(left+1==right) {
        return distance(left,right); //两个点挨着,那就返回他们的距离
    }
    double dis1=merge(left,mid);
    double dis2=merge(mid+1,right);
    double dis=min(dis1,dis2); //求出最小dis
    return dis; 
}

但是,我们的前提是点全在一边,如果说最终的dis,一个点在左,一个点在右边,那该怎么办呢?

采用反证法,先假设存在这种情况,然后我们在中轴线上每个点都画圆进行等距处理,半径为dis。

画出来实际上是一个长方形。

考虑穿过中轴线,查找 x 坐标比 dis 更接近中轴线的所有点。即fabs(p[x] - p[mid] <= dis ) (fabs函数表示浮点数绝对值) 

把这些点存入条带中。

//sum动态计算条带中点的个数
int sum=0; 
for(int i=left;i<=right;i++) {
    if(fabs(p[i].x-p[mid].x)<=dis) {
        tiaodai[++sum]=i;
    }
}

由于此时条带也是乱序,加上是竖着的,所以我们再次按照y从小到大排序。

bool cmp2(int a,int b) {
    return p[a].y<p[b].y;
}

//对条带排序
    sort(tiaodai+1,tiaodai+sum+1,cmp2);

然后再次暴力搜索找到最小值,虽然这次还是O(n²),但基数相比刚才少太多太多了。

for(int i=1;i<=sum;i++) {
    for(int j=i+1;j<=sum;j++) {
        dis=min(dis,distance(tiaodai[i],tiaodai[j]));
    }
}

代码

玄学AC法

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cmath>
#define endl '\n'
#define N 200005
typedef long long ll;
using namespace std;
typedef struct {
    double x,y; //原坐标
    double xx,yy; //新坐标
}point;
point p[N]; 
//计算距离
double distance(int i,int j) {
    return sqrt((p[i].x-p[j].x)*(p[i].x-p[j].x)+(p[i].y-p[j].y)*(p[i].y-p[j].y));
}
//根据新坐标排序
bool cmp(point i,point j) {
    return i.xx<j.xx;
}
int main() {
    int t;cin>>t;
    while(t--) {
        int n;cin>>n;
        for(int i=1;i<=n;i++) {
            cin>>p[i].x>>p[i].y;
            p[i].xx=p[i].x*cos(1)-p[i].y*sin(1); 
            //假设旋转1弧度(57度) 求出新坐标,排序与y没啥关系,就不求yy
        }
        sort(p+1,p+n+1,cmp);
        //暴力往后每次都枚举5个 看似O(n²)实则O(n)
        double ans=99999999;
        for(int i=1;i<=n;i++) {
            for(int j=1;j<=5&&j+i<=n;j++) {
                ans=min(ans,distance(i,i+j));
            }
        }
        printf("%.4lf\n",ans);
    }
    return 0;
}

正常分治法

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cmath>
#include <time.h>
#define endl '\n'
#define N 200005
typedef long long ll;
using namespace std;
typedef struct {
    double x,y;
}point;
point p[N];
int tiaodai[N];
//对点集排序
bool cmp1(point a,point b) {
    if(a.x==b.x) {
        return a.y<b.y;
    }
    else return a.x<b.x;
}
bool cmp2(int a,int b) {
    return p[a].y<p[b].y;
}
double distance(int i,int j) {
    return sqrt((p[i].x-p[j].x)*(p[i].x-p[j].x)+(p[i].y-p[j].y)*(p[i].y-p[j].y));
}
double merge(int left,int right) {
    //递归找出左右两边的dis
    double dis=999999;
    if(left==right) return dis;
    if(left+1==right) {
        return distance(left,right);
    }
    int mid=(left+right)>>1;
    double dis1=merge(left,mid);
    double dis2=merge(mid+1,right);
    dis=min(dis1,dis2);
    //sum动态计算条带中点的个数
    int sum=0; 
    for(int i=left;i<=right;i++) {
        if(fabs(p[i].x-p[mid].x)<=dis) {
            tiaodai[++sum]=i;
        }
    }
    //对条带排序
    sort(tiaodai+1,tiaodai+sum+1,cmp2);
    //暴力搜索结果 复杂度O(n²) 此处也可以再次优化
    //虽然还是O(n²) 但n的基数相比最先少太多太多了
    //所以总时间复杂度O(nlogn²)=O(2nlogn) 即O(nlogn) 
    for(int i=1;i<=sum;i++) {
        for(int j=i+1;j<=sum;j++) {
            dis=min(dis,distance(tiaodai[i],tiaodai[j]));
        }
    }
    return dis;
}
int main() {
    int t;cin>>t;
    while(t--) {
        int n;cin>>n;
        for(int i=1;i<=n;i++) {
            cin>>p[i].x>>p[i].y;
        }
        sort(p+1,p+n+1,cmp1);
        printf("%.4lf\n",merge(1,n));
    }
    return 0;
}

  • 12
    点赞
  • 30
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

青衿白首志

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值