从零开始掌握DDoS攻击与防护 在攻击过程中和结束后,监控服务器的表现至关重要。你可以通过以下几种方式进行分析:检查服务器日志:通过查看服务器的日志文件,了解攻击对服务器的具体影响。例如,可以检查/var/log/下的相关日志文件,分析流量高峰时期的日志记录。使用流量监控工具:使用Wireshark或tcpdump等工具,分析在攻击期间的网络流量,识别潜在的漏洞。性能监控:通过htop或top命令,实时监控服务器的CPU、内存和带宽使用情况,记录在攻击前后资源的变化情况。
如何“破解”大模型 当我提到“模型”时,我指的是Hugging Face的 transformer model,这些模型经过指令训练,可以回答问题,就像我们使用ChatGPT一样。并非所有模型都是为了聊天而设计的,但我工作的模型都是这样的。大多数现有的模型(如Alpaca、Vicuna、WizardLM、MPT-7B-Chat、Wizard-Vicuna、GPT4-X-Vicuna)都具有某种嵌入的对齐机制,可以理解为《三体》中的思想钢印。一般来说,这是件好事。这种机制防止模型做出一些不好的行为,比如教你如何制造毒品或炸弹。
lora微调Qwen模型全流程 LoRA(Low-Rank Adaptation)是一种用于大模型高效微调的方法。通过对模型参数进行低秩分解和特定层的微调,LoRA 能在保持模型性能的前提下显著减少训练所需的参数量和计算资源。接下来是对 LoRA 微调 Qwen 模型的完整技术流程概述:模型和分词器加载首先,从预训练模型库中加载预训练的 Qwen 模型和分词器。预训练模型是大规模语料上训练的通用语言模型,能够为特定任务提供强大的语言理解和生成能力。配置 LoRA。
用yoloV5做一个口罩检测的全流程实现 在安装前,如果环境以及安装了torch,就将requirements.txt中的torch部分注释掉,如果尚未安装torch,也不要使用国内镜像取安装torch,国内镜像安装的是cpu版本。–weights:训练好的模型权重文件路径(这里为runs/train/exp/weights/best.pt)。–weights:训练好的模型权重文件路径(这里为runs/train/exp/weights/best.pt)–weights:预训练模型权重文件(这里为yolov5s.pt)。
构建用户违约风险预测模型:从数据治理到模型优化的完整流程 本文将介绍如何构建一个用户违约风险预测模型,从数据治理到模型优化的完整流程。我们将使用 Python 和常用的数据科学库如 Pandas、Scikit-learn 来实现这一过程。我们需要处理数据中的缺失值。对于数值列,我们使用均值填充;对于非数值列,我们使用前向填充和后向填充。首先,我们读取 credit.csv 文件,并查看数据的基本信息。将性别用 0 和 1 替换,并对省份列进行 One-Hot 编码。以下是使用线性回归来预测用户的信用额度的示例代码。使用 Z-score 方法处理数值列中的异常值。
基于YOLOv8的行人检测项目的实现 YOLOv8是YOLO系列的最新版本,在继承YOLOv7的基础上进行了进一步改进。YOLOv8在网络结构、损失函数和训练策略上都有显著的提升,使其在目标检测任务中表现更加出色。各位只需要记住,做目标检测,无脑选V8就完了。改进的网络结构:采用更深层次的卷积神经网络,增强了特征提取能力。新的损失函数:引入了优化的损失函数,提高了检测的精度和稳定性。多尺度检测:增强了对不同尺度物体的检测能力。yoloV8 Github主页。
基于Alex Net的动物识别算法 AlexNet 是一个深度卷积神经网络,它在2012年的ImageNet大规模视觉识别挑战中取得了突破性的成绩,极大地推动了深度学习在图像识别领域的应用。AlexNet特别适用于处理高维度的图像数据,因此它在动物识别问题上表现出色。
模型训练过程可视化--WandB的使用方法 WandB 是一个帮助机器学习开发者跟踪和可视化他们实验的软件库。它提供了一个平台,可以帮助团队和个人记录机器学习实验的各种参数、模型训练过程中的指标以及最终结果。WandB 的设计目的是简化和加速机器学习项目的开发流程,让研究者和开发者能够更容易地分享结果、复现实验,并进行协作。步骤 2: 注册和登录-在开始使用WandB之前,你需要创建一个WandB账户(如果你还没有的话)。你可以在WandB官网注册。注册成功后会出现你的账号的一个API密钥。可以点击复制这个密钥。同时也提供了一段样例代码,
note: This error originates from a subprocess, and is likely not a problem with pip.解决方案 问题描述:在安装一些python包的时候,出现找不到名为packaging的模块的问题。给了一个note:This error originates from a subprocess, and is likely not a problem with pip.具体情况见如下:环境和条件:问题发生在生产环境中,应用程序部署在Linux服务器上。具体的项目为基于深度学习的图像压缩。
解除GPT4使用次数限制 目前,GPT-4的回答次数限制将从每3小时25次增加到每3小时50次。这意味着用户每3小时可以进行更多次数的对话,更快地获得所需的信息和回答问题。但对于某些用户,这个次数还是有点少,以下将提供一种方式解除次数限制。
LangChain库的对话记忆机制 在人工智能领域,对话记忆是聊天机器人技术的一个重要组成部分。它使得机器人能够记住与用户的历史交互,从而进行连贯的对话。如果没有对话记忆,每个查询都会被当作完全独立的输入来处理,这将大大降低对话的连贯性和实用性。对话记忆指的是机器人记住与用户之前交互的能力。默认情况下,机器人是无状态的,也就是说,它们处理每个输入时都不会考虑之前的交互。对话记忆的存在,使得机器人能够记住之前的交互,这在聊天机器人等应用中非常重要。不同的对话记忆机制适用于不同的对话场景。
手写电话号码识别 手写电话号码识别作为一个项目的选择,源于对日常实际应用的深刻理解。在现代生活中,电话号码经常出现在各种场景,例如名片、手写便签、照片等。有效地从这些手写文本中提取电话号码具有广泛的应用价值。这篇博客探讨了一个小型手写数字识别项目的思路和实现过程。通过前两篇博客,我们首先介绍了手写数字识别的基础知识,并详细讲解了如何使用深度学习训练一个手写数字识别模型。随后,我们提出并尝试将这一模型应用于手写电话号码的识别。
手写数字识别----实时识别 我们选择用深度学习训练手写数字识别。主要是因为深度学习模型能够自动学习数据中的特征,而不需要手动设计特征提取器。对于手写数字识别,底层可能学到笔画的基本特征,而高层次则可能学到数字的整体形状。可以使用在大规模数据上预训练的模型,在相对较小的手写数字数据集上进行微调。当然,它还能做些更有意思的事情,下期做手写电话号码识别。
spring项目结构的完整解释 这就是项目结构的完整解释,包括了各个文件和目录的作用以及它们在项目中的层级关系。这种结构是一种常见的组织方式,通常用于开发Java Web应用程序,特别是使用Spring框架的应用程序
一文详解SCP命令 scp(Secure Copy Protocol)是一个用于在本地计算机和远程计算机之间进行文件传输的命令行工具,它基于 SSH(Secure Shell)协议,提供了加密和安全的文件传输功能。scp可以用于将文件和目录从一台计算机复制到另一台计算机,也可以用于从远程计算机复制文件到本地计算机。例如,如果你想将文件复制到 Linux 系统,并且你担心网络上的窥探者可能会访问你的文件,则可以轻松使用 SCP 命令。SCP 在 SSH(安全外壳)连接上使用加密,这确保即使数据被截获,它仍然受到保护。
java: 无法访问org.springframework.boot.SpringApplication······类文件具有错误的版本 61.0, 应为 52.0。 更新Java编译器:将你的Java编译器更新到与你正在使用的Spring Boot版本兼容的版本。如果你使用的是较新版本的Spring Boot,那么你需要使用相应版本的Java编译器。降低Spring Boot版本:如果你的项目没有特别需要使用较新版本的Spring Boot,可以考虑将Spring Boot版本降低到与你的Java编译器版本兼容的版本。你可以在项目的Maven或Gradle配置文件中指定要使用的Spring Boot版本。