原题传送门:https://ac.nowcoder.com/acm/problem/14352
题目描述
小z放假了,准备到RRR城市旅行,其中这个城市有N个旅游景点。小z时间有限,只能在三个旅行景点进行游玩。小明租了辆车,司机很善良,说咱不计路程,只要你一次性缴费足够,我就带你走遍RRR城。
小z很开心,直接就把钱一次性缴足了。然而小z心机很重,他想选择的路程尽量长。
然而司机也很聪明,他每次从一个点走到另外一个点的时候都走最短路径。
你能帮帮小z吗?
需要保证这三个旅行景点一个作为起点,一个作为中转点一个作为终点。(一共三个景点,并且需要保证这三个景点不能重复).
输入描述:
本题包含多组输入,第一行输入一个整数t,表示测试数据的组数 每组测试数据第一行输入两个数N,M表示RRR城一共有的旅游景点的数量,以及RRR城中有的路的数量。 接下来M行,每行三个数,a,b,c表示从a景点和b景点之间有一条长为c的路 t<=40 3<=N,M<=1000 1<=a,b<=N 1<=c<=100
输出描述:
每组数据包含一行,输出一个数,表示整条路程的路长。 如果找不到可行解,输出-1.
示例1
输入
4 7 7 1 2 100 2 3 100 1 4 4 4 5 6 5 6 10 1 6 4 6 7 8 7 3 1 2 1 1 3 1 1 3 2 7 3 1 2 1 3 4 1 5 6 1 8 9 1 2 1 2 3 1 3 4 1 4 1 1 4 5 1 5 6 1 6 7 1 7 8 1 8 5 1
输出
422 3 -1 9
说明
请注意这是一个稀疏图.
思路:根据题意可以知道路径最少需要经过三个点,因此只需在建图以后遍历每个点将其作为中转点然后跑一遍spfa,取路径中最长和第二长路径之和的最大值即可
AC代码:
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
using namespace std;
const int N=1010,M=100010,INF=0x3f3f3f3f;
int n,m;
int h[N],e[M],w[M],ne[M],idx;
int dist[N],res,temp[N];
bool st[N];
void add(int a,int b,int c)
{
w[idx]=c,e[idx]=b,ne[idx]=h[a],h[a]=idx++;
}
void spfa(int start)
{
memset(dist,0x3f,sizeof dist);
memset(st,0,sizeof st);
dist[start]=0;
queue<int> q;
q.push(start);
st[start]=1;
while(q.size())
{
int t=q.front();
q.pop();
st[t]=0;
for(int i=h[t];~i;i=ne[i])
{
int j=e[i];
if(dist[j]>dist[t]+w[i])
{
dist[j]=dist[t]+w[i];
if(!st[j])
{
q.push(j);
st[j]=1;
}
}
}
}
int cnt=0;
for(int i=1;i<=n;i++)
if(dist[i]!=INF)
temp[cnt++]=dist[i];
if(cnt<=2)return ;
sort(temp,temp+cnt);
res=max(res,temp[cnt-1]+temp[cnt-2]);
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
memset(h,-1,sizeof h);
scanf("%d%d",&n,&m);
while(m--)
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
add(a,b,c),add(b,a,c);
}
res=0;
for(int i=1;i<=n;i++)
spfa(i);
if(res)
printf("%d\n",res);
else
puts("-1");
}
}