Atcoder 309

文章介绍了AtCoder组织的一场编程竞赛,包括A至E五道题目。A题要求判断两个数是否水平相连,B题涉及矩阵旋转,C题是关于药物剂量的计算,D题是寻找使两个顶点间路径最长的边,E题则需要计算给定范围覆盖的家庭成员数量。每道题目都有相应的解题思路和代码实现。
摘要由CSDN通过智能技术生成

题目链接:Denso Create Programming Contest 2023 (AtCoder Beginner Contest 309) - AtCoder

A题:问你B是否和A水平相连接(特判一下%3=0的情况就行)

代码:

#include <bits/stdc++.h>
using namespace std;
const int N = 1e5 + 10;
typedef long long ll;
typedef pair<int, int> PII;

void solve()
{
    int a, b;
    cin >> a >> b;
    if ((b == a + 1 && a % 3 != 0))
    {
        cout << "Yes" << endl;
    }
    else
    {
        cout << "No" << endl;
    }
}
int main()
{
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    cout.tie(0);

    solve();
    return 0;
}

B题:顺时针旋转外圈的数,只有四行需要处理,注意边界即可

代码:

#include <bits/stdc++.h>

using namespace std;
char a[110][110], b[110][110];
int main()
{

    int n;
    cin >> n;
    for (int i = 0; i < n; i++)
        for (int j = 0; j < n; j++)
            cin >> a[i][j], b[i][j] = a[i][j];
    for (int i = 0; i < n; i++)
    {
        if (i != 0)
            b[0][i] = a[0][i - 1];
        if (i != n - 1)
            b[n - 1][i] = a[n - 1][i + 1];
        if (i != 0)
            b[i][n - 1] = a[i - 1][n - 1];
        if (i != n - 1)
            b[i][0] = a[i + 1][0];
    }
    for (int i = 0; i < n; i++)
    {
        for (int j = 0; j < n; j++)
            cout << b[i][j];
        cout << endl;
    }
    return 0;
}

C题:医生给患者一个药单,告诉我们患者每天对于各种药都要吃几片,问我们第几天我们吃的药片数会小于k。刚开始我一看这题目有点像差分可是后来一看数据范围,最多有1E9天,没法计算前缀和,后来我在模拟数据的时候发现,每次我们吃药片的数量改变都是在吃某种药品的最后一天的后一天,因此我们只需要枚举所有的药品需要吃的天数即可,如果减去这种药,我们吃的药片数量小于k,那么我们的答案便是当前的天数加1.

代码:

#include <bits/stdc++.h>
using namespace std;
const int N = 3e5 + 10;
typedef long long ll;
typedef pair<int, int> PII;
vector<PII> Map;
ll n, k, sum;
void solve()
{
    cin >> n >> k;
    for (int i = 0; i < n; i++)
    {
        ll a, b;
        cin >> a >> b;
        sum += b;
        Map.push_back({a, b});
    }
    sort(Map.begin(), Map.end());
    if (sum <= k)
    {
        cout << 1 << endl;
    }
    else
    {
        for (int i = 0; i < Map.size(); i++)
        {
            sum -= Map[i].second;
            if (sum <= k)
            {
                cout << Map[i].first + 1 << endl;
                return;
            }
        }
    }
}

int main()
{
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    cout.tie(0);

    solve();
    return 0;
}

D题

给我们两个无向图,编号是从1-N,让我们加一条边,使得1-N的距离最远。这题一眼丁真,我们可以先求出第一部分的图中到1号点最远的距离,在求出第二部分到N号点最远的点的距离,再将这两个点连起来,那么我们就得到了1-N的最远距离。

代码:

#include <bits/stdc++.h>
using namespace std;
const int N = 3e5 + 10;
typedef long long ll;
typedef pair<int, int> PII;
vector<PII> Map;
ll n, k, sum;
void solve()
{
    cin >> n >> k;
    for (int i = 0; i < n; i++)
    {
        ll a, b;
        cin >> a >> b;
        sum += b;
        Map.push_back({a, b});
    }
    sort(Map.begin(), Map.end());
    if (sum <= k)
    {
        cout << 1 << endl;
    }
    else
    {
        for (int i = 0; i < Map.size(); i++)
        {
            sum -= Map[i].second;
            if (sum <= k)
            {
                cout << Map[i].first + 1 << endl;
                return;
            }
        }
    }
}

int main()
{
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    cout.tie(0);

    solve();
    return 0;
}

E题:

告诉我们一个家庭有n个人,1号是祖先,其余的每个人的父辈都告诉我们是谁了(刚开始感觉有点像并查集一类的东西,实际上没啥关系),然后给我们m个范围,每个范围包括一个人的编号,和包含他后面几代。问我们这m个范围一共能够包括多少个人?

这个题稍微有点难度,涉及到求一个父辈其几代以内一共有多少人,这个有很多的解法,我还是更推荐题解的方法,用一个简单的dp[]来表示我们这个人后面的几代人被覆盖了,这样我们在输入的时候就可以简化掉一些不必要的重复计算,在我们解决完输入以后我们的dp[i]表示的就是第i个人后面几代被包含在内了。现在我们开始枚举从1-N,我们利用每个人都有父辈(除了1号)来更新我们的dp数组,比如dp[1]=1,2号是1号的后代,那么dp[2]=dp[p[2]]-1(p[2]表示2号的父辈),这样更新完一遍以后,如果dp数组被更新过了,那么说明这个人会被我们的范围包包括到。

代码:

#include <bits/stdc++.h>
using namespace std;
#define endl '\n'
const int N = 3e5 + 10;
typedef long long ll;
typedef pair<int, int> PII;
int dp[N], p[N], ans = 0, n, m;
void solve()
{
    memset(dp, -1, sizeof dp);
    cin >> n >> m;
    for (int X, i = 1; i < n; i++)
    {
        cin >> X;
        p[i + 1] = X;
    }
    for (int i = 0; i < m; i++)
    {
        int x, y;
        cin >> x >> y;
        dp[x] = max(dp[x], y);
    }
    for (int i = 1; i <= n; i++)
        dp[i] = max(dp[i], dp[p[i]] - 1);

    for (int i = 1; i <= n; i++)
        if (dp[i] >= 0)
            ans++;
    cout << ans << endl;
}

int main()
{
    ios::sync_with_stdio(false);
    cin.tie(0);
    cout.tie(0);
    int t = 1;
    // cin >> t;
    while (t--)
        solve();
    return 0;
}

题目可能说的不清楚,一切以英语体面为准,有啥疑问可以直接问我(*^_^*)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值