HNU-算法设计与分析-作业2-排列问题、Hanoi(2021级)

1.排列问题:

        设计一个递归算法生成n个元素{r1,r2,…,rn}的全排列 。

        设R={r1,r2,…,rn}是要进行排列的n个元素,Ri=R-{ri}。 集合X中元素的全排列记为perm(X)。 (ri)perm(X)表示在全排列perm(X)的每一个排列前加上前缀得到的排列。R的全排列可归纳定义如下:

当n=1时,perm(R)=(r),其中r是集合R中唯一的元素;

当n>1时,perm(R)由(r1)perm(R1),(r2)perm(R2),…,(rn)perm(Rn)构成。

解:

        本题递归思想:先固定集合中一个元素的位置,再递归考虑其他元素的排列方式。

#include <iostream>
using namespace std;

template<class Type>
void perm(Type list[],int k,int m){  //list[k...m]所有排列 
	if(k==m){  //只剩一个元素 
		for(int i=0;i<=m;i++)
			cout<<list[i]; //输出一个已经排好的序列 
		cout<<endl;
	}
	else{	//还有多个元素待排列,递归产生排列 
		for(int i=0;i<=m;i++){
			swap(list[k],list[i]);
			perm(list,k+1,m);
			swap(list[k],list[i]);	//为不影响更上层的递归排列,需再次交换 
		}
	}
}

template<class Type>
inline void swap(Type &a,Type &b){
	Type temp=a;
	a=b;
	b=temp;
}

int main(int argc, char** argv) {
	return 0;
}

        perm(list,k,m)产生的前缀固定为list[0……k-1],后缀为list[k……m]全排列;

        取perm(list,0,n-1)即得list[0……n-1]全排列.

2.hanoi塔问题

        设a,b,c是3个塔座。开始时,在塔座a上有一叠共n个圆盘,这些圆盘自下而上,由大到小地叠在一起。各圆盘从小到大编号为1,2,…,n,现要求将塔座a上的这一叠圆盘移到塔座b上,并仍按同样顺序叠置。在移动圆盘时应遵守以下移动规则:

规则1:每次只能移动1个圆盘;

规则2:任何时刻都不允许将较大的圆盘压在较小的圆盘之上;

规则3:在满足移动规则1和2的前提下,可将圆盘移至a,b,c中任一塔座上。

解:

        本题递归思想:

(1)n=1时,盘1从A——>B;

(2)n>1时,将盘1……n-1移到C,盘n移到B;再递归地将柱C的n-1个盘移到B;

#include <iostream>
using namespace std; 

//递归方式 
void move(int a,int b){
	cout<<a<<"-->"<<b<<endl; //打印每次移动盘子的过程 
} 
void hanoi(int n,int a,int b,int c){
	if(n>0){
		hanoi(n-1,a,c,b);
		move(a,b);
		hanoi(n-1,c,b,a);
	}
}
 
int main(int argc, char** argv) {
	return 0;
}

3.证明Hanoi塔问题的递归算法和非递归算法实际上是一回事

#include <iostream>
using namespace std; 

//递归方式 
void move(int a,int b){
	cout<<a<<"-->"<<b<<endl; //打印每次移动盘子的过程 
} 
void hanoi(int n,int a,int b,int c){
	if(n>0){
		hanoi(n-1,a,c,b);
		move(a,b);
		hanoi(n-1,c,b,a);
	}
}


//非递归方式
struct Status { // 保存函数状态
    int n;
    char start, mid, end;   // 初始塔,辅助中间塔,最终要移动到的塔
    Status(int _n, char _A, char _B, char _C): n(_n), start(_A), mid(_B), end(_C) {}
};
void hanoiStack(int n, char A, char B, char C) { // 由于栈的特殊性质,FILO,所以我们需要将原来函数的调用方式反过来进行
    stack<Status> myS;
    myS.push(Status(n, A, B, C));
    while (!myS.empty())
    {
        Status ns = myS.top();
        myS.pop();
        if(ns.n == 1) {
            printf("%c -> %c\n", ns.start, ns.end);
        }else {
            myS.push(Status(ns.n-1, ns.mid, ns.start, ns.end));    
            myS.push(Status(1, ns.start, ns.mid, ns.end));
            myS.push(Status(ns.n-1, ns.start, ns.end, ns.mid));   
        }
    }
}

 
int main(int argc, char** argv) {
	return 0;
}

        实际上,非递归方式使用循环和栈模拟了递归过程,每次迭代都将当前步骤的状态压入栈中,然后按照递归思路执行移动操作。

        换句话说,递归方式其实是操作系统/编程语言帮我们实现了函数栈。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值