1.Dijkstra算法的基本思想
2.正确性
- 贪心选择性质
- 最优子结构性质
最优子结构性质的证明与书上的(即下图的)不同,正确情况应当与其他的例子的最优子结构性质的反证证明类似:
最优子结构性质:任意两点之间的最短路径的子路径仍然是最短路径
假设P(i,j)={Vi....Vk..Vs...Vj}是从顶点i到j的最短路径,则有P(i,j)=P(i,k)+P(k,s)+P(s,j)。
而P(k,s)不是从k到s的最短距离,那么必定存在另一条从k到s的最短路径P'(k,s),那么P'(i,j)=P(i,k)+P'(k,s)+P(s,j)<P(i,j)。
则与P(i,j)是从i到j的最短路径相矛盾。因此该性质得证。
原文链接:Dijkstra最优子结构性质证明