HNU-算法设计与分析-作业8-Dijkstra算法【贪心】(2021级)

1.Dijkstra算法的基本思想

2.正确性

  • 贪心选择性质
  • 最优子结构性质

        最优子结构性质的证明与书上的(即下图的)不同,正确情况应当与其他的例子的最优子结构性质的反证证明类似:

        最优子结构性质:任意两点之间的最短路径的子路径仍然是最短路径

        假设P(i,j)={Vi....Vk..Vs...Vj}是从顶点i到j的最短路径,则有P(i,j)=P(i,k)+P(k,s)+P(s,j)。

        而P(k,s)不是从k到s的最短距离,那么必定存在另一条从k到s的最短路径P'(k,s),那么P'(i,j)=P(i,k)+P'(k,s)+P(s,j)<P(i,j)。

        则与P(i,j)是从i到j的最短路径相矛盾。因此该性质得证。
                        
原文链接:Dijkstra最优子结构性质证明

3.举例

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值