一、N皇后问题的思路
二、具体代码
#include <stdio.h>
#include <malloc.h>
#include <math.h>
bool place(int *paraSolution, int paraT)
{
//判断第paraT行是否在前几行的对角线上或者皇后在同一列上
//如果在对角线上那么第paraT行减去前面的某一行的行数的绝对值等于对应皇后的列数相减的绝对值
for (int j = 1; j < paraT; j++)
{
if ((abs(paraT - j) == abs(paraSolution[j] - paraSolution[paraT])) || (paraSolution[j] == paraSolution[paraT]))
return false;
}
return true;
}
void backtracking(int *paraSolution, int paraN, int paraT)
{ // paraN皇后个数,paraT第几行
if (paraT > paraN)
{
//如果第paraN行的皇后都找到了的话就开始打印
for (int i = 1; i <= paraN; i++)
printf("%d ", paraSolution[i]);
printf("\r\n");
//示意图
// for (int i = 1; i <= paraN; i++)
// {
// for (int j = 1; j <= paraN; j++)
// {
// if (paraSolution[i] == j)
// printf("Q ");
// else
// printf(". ");
// }
// printf("\n");
// }
// printf("\n");
}
else
{
for (int i = 1; i <= paraN; i++)
{
paraSolution[paraT] = i; //第paraT行的皇后放在第i列(paraT,paraSolution[paraT])为皇后的坐标
if (place(paraSolution, paraT))
backtracking(paraSolution, paraN, paraT + 1);
}
}
}
void nQueen(int paraN)
{
int *solution = (int *)malloc((paraN + 1) * sizeof(int)); //申请paraN个空间用来存储每一行皇后的位置(列数)(paraT,solution[paraT])为皇后对应的坐标
for (int i = 0; i <= paraN; i++) //将每一行皇后的位置都初始化为0
solution[i] = 0;
backtracking(solution, paraN, 1);
}
int main()
{
nQueen(8);
return 1;
}
三、哈夫曼树
也称最小生成树,主要是根据结点的权值来进行划分
代码如下
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
typedef double DataType; //结点权值的数据类型
typedef struct HTNode //单个结点的信息
{
DataType weight; //权值
int parent; //父节点
int lc, rc; //左右孩子
}*HuffmanTree;
typedef char **HuffmanCode; //字符指针数组中存储的元素类型
//在下标为1到i-1的范围找到权值最小的两个值的下标,其中s1的权值小于s2的权值
void Select(HuffmanTree& HT, int n, int& s1, int& s2)
{
int min;
//找第一个最小值
for (int i = 1; i <= n; i++)
{
if (HT[i].parent == 0)
{
min = i;
break;
}
}
for (int i = min + 1; i <= n; i++)
{
if (HT[i].parent == 0 && HT[i].weight < HT[min].weight)
min = i;
}
s1 = min; //第一个最小值给s1
//找第二个最小值
for (int i = 1; i <= n; i++)
{
if (HT[i].parent == 0 && i != s1)
{
min = i;
break;
}
}
for (int i = min + 1; i <= n; i++)
{
if (HT[i].parent == 0 && HT[i].weight < HT[min].weight&&i != s1)
min = i;
}
s2 = min; //第二个最小值给s2
}
//构建哈夫曼树
void CreateHuff(HuffmanTree& HT, DataType* w, int n)
{
int m = 2 * n - 1; //哈夫曼树总结点数
HT = (HuffmanTree)calloc(m + 1, sizeof(HTNode)); //开m+1个HTNode,因为下标为0的HTNode不存储数据
for (int i = 1; i <= n; i++)
{
HT[i].weight = w[i - 1]; //赋权值给n个叶子结点
}
for (int i = n + 1; i <= m; i++) //构建哈夫曼树
{
//选择权值最小的s1和s2,生成它们的父结点
int s1, s2;
Select(HT, i - 1, s1, s2); //在下标为1到i-1的范围找到权值最小的两个值的下标,其中s1的权值小于s2的权值
HT[i].weight = HT[s1].weight + HT[s2].weight; //i的权重是s1和s2的权重之和
HT[s1].parent = i; //s1的父亲是i
HT[s2].parent = i; //s2的父亲是i
HT[i].lc = s1; //左孩子是s1
HT[i].rc = s2; //右孩子是s2
}
//打印哈夫曼树中各结点之间的关系
printf("哈夫曼树为:>\n");
printf("下标 权值 父结点 左孩子 右孩子\n");
printf("0 \n");
for (int i = 1; i <= m; i++)
{
printf("%-4d %-6.2lf %-6d %-6d %-6d\n", i, HT[i].weight, HT[i].parent, HT[i].lc, HT[i].rc);
}
printf("\n");
}
//生成哈夫曼编码
void HuffCoding(HuffmanTree& HT, HuffmanCode& HC, int n)
{
HC = (HuffmanCode)malloc(sizeof(char*)*(n + 1)); //开n+1个空间,因为下标为0的空间不用
char* code = (char*)malloc(sizeof(char)*n); //辅助空间,编码最长为n(最长时,前n-1个用于存储数据,最后1个用于存放'\0')
code[n - 1] = '\0'; //辅助空间最后一个位置为'\0'
for (int i = 1; i <= n; i++)
{
int start = n - 1; //每次生成数据的哈夫曼编码之前,先将start指针指向'\0'
int c = i; //正在进行的第i个数据的编码
int p = HT[c].parent; //找到该数据的父结点
while (p) //直到父结点为0,即父结点为根结点时,停止
{
if (HT[p].lc == c) //如果该结点是其父结点的左孩子,则编码为0,否则为1
code[--start] = '0';
else
code[--start] = '1';
c = p; //继续往上进行编码
p = HT[c].parent; //c的父结点
}
HC[i] = (char*)malloc(sizeof(char)*(n - start)); //开辟用于存储编码的内存空间
strcpy(HC[i], &code[start]); //将编码拷贝到字符指针数组中的相应位置
}
free(code); //释放辅助空间
}
//主函数
int main()
{
int n = 0;
printf("请输入数据个数:>");
scanf("%d", &n);
DataType* w = (DataType*)malloc(sizeof(DataType)*n);
if (w == NULL)
{
printf("malloc fail\n");
exit(-1);
}
printf("请输入数据:>");
for (int i = 0; i < n; i++)
{
scanf("%lf", &w[i]);
}
HuffmanTree HT;
CreateHuff(HT, w, n); //构建哈夫曼树
HuffmanCode HC;
HuffCoding(HT, HC, n); //构建哈夫曼编码
for (int i = 1; i <= n; i++) //打印哈夫曼编码
{
printf("数据%.2lf的编码为:%s\n", HT[i].weight, HC[i]);
}
free(w);
return 0;
}