一句话总结:贪心就很容易了,但这里是动态规划的主场!
原题链接:121 买卖股票的最佳时机
老题新做。这题本来用贪心思想一趟遍历就可以解决:
class Solution {
public int maxProfit(int[] prices) {
int n = prices.length;
int ans = 0;
int mn = 10001;
for (int i = 0; i < n; ++i) {
mn = Math.min(mn, prices[i]);
ans = Math.max(ans, prices[i] - mn);
}
return ans;
}
}
现在改用动态规划算法,那么通过动规五部曲逐步分析如下:
- 确定dp数组与其下标含义:需要用一个长度为2的数组来表示不同的状态:dp[i][0]表示第i天持有一只股票的最大收益,dp[i][1]表示第i天手上没有股票的最大收益。可以明确的一点是,最后收益最大时一定是dp[prices.length - 1][1]。
- 确定递推公式:dp[i][0]可从以下两种状态转移过来:
- 第i - 1天即持有股票,那么保持原状,dp[i][0] = dp[i - 1][0];
- 第i - 1天手上未持有股票,那么需要购买股票,dp[i][0] = -priices[i];
- dp[i][0]一定是从这两种状态转移而来,因此收益取其较大者,即有dp[i][0] = Math.max(dp[i - 1][0], -prices[i])。
- dp数组的初始化:从两个递推公式可以看出,该dp数组的递推依赖于dp[0][0]和dp[1][0],因此需要对该两者初始化。第0天手上持有一支股票,那么其最大收益即为-prices[0],于是dp[0][0]即可初始化为:dp[0][0] = -prices[0];第0天手上没有股票,那么收益为0,即dp[1][0] = 0。
- dp数组的遍历顺序:从前面的递推公式可以看出,第i天的状态计算依赖于第i - 1天的状态,因此需要从前往后遍历。
- 举例推导dp数组。
由此可得代码如下:
class Solution {
public int maxProfit(int[] prices) {
if (prices == null || prices.length == 0) return 0;
int length = prices.length;
// dp[i][0]代表第i天持有股票的最大收益
// dp[i][1]代表第i天不持有股票的最大收益
int[][] dp = new int[length][2];
int result = 0;
dp[0][0] = -prices[0];
dp[0][1] = 0;
for (int i = 1; i < length; i++) {
dp[i][0] = Math.max(dp[i - 1][0], -prices[i]);
dp[i][1] = Math.max(dp[i - 1][0] + prices[i], dp[i - 1][1]);
}
return dp[length - 1][1];
}
}
此代码存在明显优化空间:根据滚动数组原理, 可将dp数组省略掉,最后只需要两个变量即可完成。最后整体代码如下:
class Solution {
public int maxProfit(int[] prices) {
int n = prices.length;
int buy = -prices[0];
int seal = 0;;
for (int i = 1; i < n; ++i) {
buy = Math.max(buy, -prices[i]);
seal = Math.max(seal, prices[i] + buy);
}
return seal;
}
}
原题链接:122 买卖股票的最佳时机II
首先也是贪心的解法,一趟遍历即可搞定:
class Solution {
public int maxProfit(int[] prices) {
int n = prices.length;
int ans = 0;
for (int i = 1; i < n; ++i) {
ans += prices[i] > prices[i - 1] ? prices[i] - prices[i - 1] : 0;
}
return ans;
}
}
动规分析过程:与上一题极度相似。有差别的点在于解除了只能买卖一次的限制,因此在第2步确定dp数组的递推公式时,需要将前几天的收益考虑进来,即dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1] - prices[i])。其他部分与前一题完全一致。
最后整体代码如下:
class Solution {
public int maxProfit(int[] prices) {
int buy = -prices[0], seal = 0;
for (int i = 1; i < prices.length; ++i) {
buy = Math.max(buy, seal - prices[i]);
seal = Math.max(seal, buy + prices[i]);
}
return seal;
}
}