代码随想录算法训练营Day58|LC739 每日温度&LC496 下一个更大元素I

文章介绍了单调栈在编程中的应用,尤其是在寻找数组中每个元素右侧第一个比它大的元素时的解决方案。作者详细解释了单调栈的原理,如何使用递增栈进行操作,并给出了实际的代码示例。
摘要由CSDN通过智能技术生成

一句话总结:单调栈专题!

原题链接:739 每日温度

很简单的单调栈入门题。

在使用单调栈解决此题之前,先要想到:单调栈要什么时候用呢?怎么才能想到用单调栈呢? 什么时候用单调栈呢?

答:通常是一维数组,要寻找任一个元素的右边或者左边第一个比自己大或者小的元素的位置,此时我们就要想到可以用单调栈了

单调栈的时间复杂度为O(n)。

例如本题其实就是找找到一个元素右边第一个比自己大的元素,此时就应该想到用单调栈了。

再问:单调栈的原理是什么呢?为什么时间复杂度是O(n)就可以找到每一个元素的右边第一个比它大的元素位置呢?

答:单调栈的本质是空间换时间,在遍历的过程中利用一个栈来记录右边第一个比当前元素高的元素,优点是整个数组只需要遍历一次。更直白来说,就是用一个栈来记录我们遍历过的元素,因为我们遍历数组的时候,我们不知道之前都遍历了哪些元素,以至于遍历一个元素找不到是不是之前遍历过一个更小的,所以我们需要用一个容器(这里用单调栈)来记录我们遍历过的元素。

在使用单调栈的时候首先要明确如下几点:

  • 单调栈里存放的元素是什么?

单调栈里只需要存放元素的下标i就可以了,如果需要使用对应的元素,直接T[i]就可以获取。

  • 单调栈里元素是递增呢? 还是递减呢?

以下解题过程中,顺序的描述为:从栈顶到栈底的顺序,因为单纯的说从左到右或者从前到后,不说栈顶朝哪个方向的话,就会比较懵。

这里我们要使用递增顺序(再强调一下是指从栈顶到栈底的顺序),因为只有递增的时候,栈里要加入一个元素i的时候,才知道栈顶元素在数组中右面第一个比栈顶元素大的元素是i。

即:如果求一个元素右边第一个更大元素,单调栈就是递增的,如果求一个元素右边第一个更小元素,单调栈就是递减的。

使用单调栈主要有三个判断条件:

  • 当前遍历的元素T[i]小于栈顶元素T[st.peek()]的情况;
  • 当前遍历的元素T[i]等于栈顶元素T[st.peek()]的情况;
  • 当前遍历的元素T[i]大于栈顶元素T[st.peek()]的情况。

接下来是题解过程:

首先将0入栈,代表的是将下标为0的元素入栈;

然后分别依次遍历数组后序元素,如果当前遍历元素T[i]小于栈顶元素T[st.peek()],那么将i入栈;

如果T[i] == T[st.peek()],由于求解的是严格大于的是哪天,因此这里也将i入栈;

接下来最重要的是第三种情况,当T[i] > T[st.peek()],这里就需要将其作为答案置入ans数组中,并且将栈顶元素出栈;同时还需要不停地比较出栈后的栈顶元素与当前元素,只要比当前元素小就可以计算ans[st.peek()]的值,直到栈顶元素比T[i]大,或者栈为空;计算完答案后,再将当前T[i]的下标i入栈,以完成后续的计算。

以下是完整代码:

class Solution {
    public int[] dailyTemperatures(int[] temperatures) {
        Stack<Integer> st = new Stack<>();
        int[] ans = new int[temperatures.length];
        st.push(0);
        for (int i = 1; i < temperatures.length; ++i) {
            if (temperatures[st.peek()] >= temperatures[i]) st.push(i);
            else {
                while (!st.isEmpty() && temperatures[st.peek()] < temperatures[i]) {
                    ans[st.peek()] = i - st.peek();
                    st.pop();
                }
                st.push(i);
            }
        }
        return ans;
    }
}

原题链接:496 下一个更大元素I

多了一道两个数组的转换过程,其实本质是一样的。代码如下:

class Solution {
    public int[] nextGreaterElement(int[] nums1, int[] nums2) {
        Stack<Integer> stack = new Stack<>();
        int[] ans = new int[nums1.length];
        Arrays.fill(ans, -1);
        Map<Integer, Integer> map = new HashMap<>();
        for (int i = 0; i < nums1.length; ++i) {
            map.put(nums1[i], i);
        }
        stack.add(0);
        for (int i = 1; i < nums2.length; ++i) {
            if (nums2[i] <= nums2[stack.peek()]) stack.add(i);
            else {
                while (!stack.isEmpty() && nums2[stack.peek()] < nums2[i]) {
                    if (map.containsKey(nums2[stack.peek()])) {
                        int j = map.get(nums2[stack.peek()]);
                        ans[j] = nums2[i];
                    }
                    stack.pop();
                }
                stack.add(i);
            }
        }
        return ans;
    }
}

 同时还有一种利用数组的解法,由于数据范围不大, 因此利用两个数组即可优化时空复杂度。代码如下:

class Solution {
    public int[] nextGreaterElement(int[] nums1, int[] nums2) {
        int[] hash = new int[10001];
        int[] stack = new int[nums2.length];
        int top = 0;

        for(int i = 0; i < nums2.length; i++) {
            while(top > 0 && nums2[i] > nums2[stack[top - 1]]){
                hash[nums2[stack[top - 1]]] = nums2[i];
                top--;
            }
            stack[top++] = i;
        }

        int[] ans = new int[nums1.length];
        for(int i = 0; i < nums1.length; i++) {
            ans[i] = hash[nums1[i]] == 0 ?- 1 : hash[nums1[i]];
        }
        return ans;
    }
}

代码随想录算法训练营一个优质的学习和讨论平台,提供了丰富的算法训练内容和讨论交流机会。在训练营中,学员们可以通过观看视频讲解来学习算法知识,并根据讲解内容进行刷题练习。此外,训练营还提供了刷题建议,例如先看视频、了解自己所使用的编程语言、使用日志等方法来提高刷题效果和语言掌握程度。 训练营中的讨论内容非常丰富,涵盖了各种算法知识点和解题方法。例如,在第14天的训练营中,讲解了二叉树的理论基础、递归遍历、迭代遍历和统一遍历的内容。此外,在讨论中还分享了相关的博客文章和配图,帮助学员更好地理解和掌握二叉树的遍历方法。 训练营还提供了每日的讨论知识点,例如在第15天的讨论中,介绍了层序遍历的方法和使用队列来模拟一层一层遍历的效果。在第16天的讨论中,重点讨论了如何进行调试(debug)的方法,认为掌握调试技巧可以帮助学员更好地解决问题和写出正确的算法代码。 总之,代码随想录算法训练营一个提供优质学习和讨论环境的平台,可以帮助学员系统地学习算法知识,并提供了丰富的讨论内容和刷题建议来提高算法编程能力。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [代码随想录算法训练营每日精华](https://blog.csdn.net/weixin_38556197/article/details/128462133)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值