题目描述:
给你一个 只包含正整数 的 非空 数组 nums
。请你判断是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。
示例 1:
输入:nums = [1,5,11,5] 输出:true 解释:数组可以分割成 [1, 5, 5] 和 [11] 。
示例 2:
输入:nums = [1,2,3,5] 输出:false 解释:数组不能分割成两个元素和相等的子集。
提示:
1 <= nums.length <= 200
1 <= nums[i] <= 100
思路描述:
题目要求我们求解一个数组中是否可以分成两个等和的子数组,而且这两个子数组的并集为该数组。我们转变一下思路,题目可以等价地转换为一个数组中是否存在一个子数组,其和为数组总和的一半,即是否可以选取一些数,使得其和为总和的一半,即背包问题。
代码:
class Solution {
public boolean canPartition(int[] nums) {
int n = nums.length;
//数组长度为1,不可能分割
if (n < 2) {
return false;
}
int sum = 0, maxNum = 0;
for (int num : nums) {
sum += num;
maxNum = Math.max(maxNum, num);
}
//数组总和为奇数,不可能分割
if (sum % 2 != 0) {
return false;
}
int target = sum / 2;
//数组中的最大值大于目标值的时候
if (maxNum > target) {
return false;
}
//动态规划求解背包问题
boolean[][] dp = new boolean[n][target + 1];
for (int i = 0; i < n; i++) {
dp[i][0] = true;
}
dp[0][nums[0]] = true;
for (int i = 1; i < n; i++) {
int num = nums[i];
for (int j = 1; j <= target; j++) {
if (j >= num) {
dp[i][j] = dp[i - 1][j] | dp[i - 1][j - num];
} else {
dp[i][j] = dp[i - 1][j];
}
}
}
return dp[n - 1][target];
}
}