SDNU_ACM_ICPC_2022_Winter_Practice_4th [个人赛]

本文详细介绍了四种不同类型的问题及其解决方案:博弈论问题,涉及Alice和Bob轮流取硬币的游戏策略;数组处理,讨论如何在不改变顺序的情况下合并两个数组以最大化前缀和;几何计算,解决直木棒受热膨胀后中点移动距离的计算;以及字符串操作,探讨如何通过异或操作找到两个数的最大异或值。每个问题都提供了清晰的思路和C++代码实现。
摘要由CSDN通过智能技术生成

A

A - A Funny Game

题意:n枚硬币围成一圈,每轮可以拿走相邻的一或两枚硬币,最后取光硬币的玩家获胜。Alice先手,问谁会获胜。

思路:当n<=2时,Alice可以一次全部拿走,Alice必胜;当n>=3时,无论Alice拿走1或2个,Bob都可根据剩余硬币的奇偶性去拿硬币,使得给Alice剩下的硬币数量为偶数,此后,Bob只需模仿Alice拿硬币,Bob必胜。(对称博弈)

#include <stdio.h>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <iostream>
#include <map>
#include <stack>
#include <string>
#include <cstring>
#include <vector>
#include <list>
#include <cstdlib>
#include <set>
#include <queue>
#define lowbit(x) x&(-x)
#define endl '\n'
#define sf(x) scanf("%d",&x)
#define rep(i,x) for(i=0;i<(x);i++)
#define gen(x) x##_
typedef long long ll;
const int maxx=1e6+10;
using namespace std;

void solve()
{
    int n;
    while(cin>>n&&n)
    {
        if(n<=2) cout<<"Alice\n";
        else cout<<"Bob\n";
    }
}
int main()
{
    int _t=1;
    //scanf("%d",&_t);
    while(_t--)
    {
        solve();
    }
    system("pause");
}

D

D - Red and Blue

题意:给你n个元素的r数组,m个元素的b数组,在不改变两数组元素相对位置的前提下合并成a数组,求f(a)的最大值

思路: 要求a数组的最大前缀和,因为b和r数组的顺序是独立的,所以只需求出b数组的最大前缀和加上r数组的最大前缀和即为答案。

#include <stdio.h>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <iostream>
#include <map>
#include <stack>
#include <string>
#include <cstring>
#include <vector>
#include <list>
#include <cstdlib>
#include <set>
#include <queue>
#define lowbit(x) x&(-x)
#define endl '\n'
#define sf(x) scanf("%d",&x)
#define rep(i,x) for(i=0;i<(x);i++)
#define gen(x) x##_
typedef long long ll;
const int maxx=110;
const int inf=0x3f3f3f3f;
using namespace std;
ll n,m;
ll a[maxx],b[maxx];
void solve()
{
    scanf("%lld",&n);
    ll maxa=0,maxb=0;
    ll suma=0,sumb=0;
    for(int i=1;i<=n;i++)
    {
        scanf("%lld",&a[i]);
        suma+=a[i];
        if(suma>maxa) maxa=suma;
    }
    scanf("%lld",&m);
    for(int i=1;i<=m;i++)
    {
        scanf("%lld",&b[i]);
        sumb+=b[i];
        if(sumb>maxb) maxb=sumb;
    }
    printf("%lld\n",maxa+maxb);
}
int main()
{
    int _t=1;
    scanf("%d",&_t);
    while(_t--)
    {
        solve();
    }
    system("pause");
}

E

E - Expanding Rods

题意:给你直木棒初始的长度L,受热膨胀后的弧长L_,求木棒中点移动的距离x(弓高)

 思路:由L_的表达式可知L_随x的增大而增大。题目确定了精度,知道x的上下界,可以二分答案。二分x,比较与L_的关系。

二分答案特征:

1.有最大值最小值区间。
2.二分过程存在单调性,并利用单调性。
3.求最大值的最小,或求最小值的最大。

 参考博客

#include <stdio.h>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <iostream>
#include <map>
#include <stack>
#include <string>
#include <cstring>
#include <vector>
#include <list>
#include <cstdlib>
#include <set>
#include <queue>
#define lowbit(x) x&(-x)
#define endl '\n'
#define sf(x) scanf("%d",&x)
#define rep(i,x) for(i=0;i<(x);i++)
#define gen(x) x##_
typedef long long ll;
const int maxx=110;
const int inf=0x3f3f3f3f;
using namespace std;
double L,N,C;
void solve()
{
    while(cin>>L>>N>>C)
    {
        if(L<0&&N<0&&C<0) return ;
        double L_=(1+N*C)*L;//膨胀后的长度
        double l=0,r=L/2;//x的最小值,最大值
        while(r-l>1e-5)
        {
            double x=(l+r)/2.0;
            double R=x/2+L*L/8/x;//半径
            double tem=2.0*R*asin(L/2/R);//二分的弧长
            if(L_>tem)//由单调性知x小了
            {
                l=x;
            }
            else
            {
                r=x;
            }
        }
        printf("%.3f\n",l);
    }
}
int main()
{
    int _t=1;
    //scanf("%d",&_t);
    while(_t--)
    {
        solve();
    }
    system("pause");
}

F

F - The XOR Largest Pair

题意:

 思路:求两个数异或值最大,因为异或为不进位的加法,一定是较大的一个数(注意不是最大)与另一个在二进制下对应位上不同个数最多的一个数进行异或。所以先取出二进制位数最多的几个数,枚举这些数,与其他数进行异或,不断取最大。

#include <stdio.h>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <iostream>
#include <map>
#include <stack>
#include <string>
#include <cstring>
#include <vector>
#include <list>
#include <cstdlib>
#include <set>
#include <queue>
#define lowbit(x) x&(-x)
#define endl '\n'
#define sf(x) scanf("%d",&x)
#define rep(i,x) for(i=0;i<(x);i++)
#define gen(x) x##_
typedef long long ll;
const int maxx=1e5+10;
const double PI=acos(-1);
const int inf=0x3f3f3f3f;
using namespace std;
int n;
ll a[maxx];
ll op[maxx];
ll ppow(ll n,ll m)
{
    ll ret=1;
    for(ll i=1;i<=m;i++)
    {
        ret*=n;
    }
    return ret;
}
void solve()
{
    scanf("%d",&n);
    ll ma=-inf;
    for(int i=1;i<=n;i++)
    {
        scanf("%lld",&a[i]);
        if(a[i]>ma) ma=a[i];//取出最大值
    }
    ll ans=-inf;
    int x=1.0*log(ma)/log(2);//x为最大值在二进制下的位数 x=log 2 ma  向下取整
    ll tem=ppow(2,x);//tem为x位二进制下的最小值
    int cnt=0;
    for(int i=1;i<=n;i++)//取出二进制位数最多的几个数
    {
        if(a[i]>=tem)//取出二进制位数最多的几个数
        {
            op[++cnt]=a[i];
        }
    }
    for(int i=1;i<=cnt;i++)//枚举二进制位数最多的几个数
    {
        for(int j=1;j<=n;j++)//枚举a[j]
        {
            ll ret=op[i]^a[j];
            if(ret>ans) ans=ret;
        }
    }
    printf("%lld",ans);
}
int main()
{
    int _t=1;

    //scanf("%d",&_t);
    while(_t--)
    {
        solve();
    }
    system("pause");
}

G

G - Teleporter

题意:给你n个点,每个点可以到达的终点,经过k次旅行,求最终到达的点。

思路:n个点且每个点都有一条出边的有向图一定有且只有一个环。先走到环的起点,然后对环的长度取模,继续在环上走即可。

#include <stdio.h>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <iostream>
#include <map>
#include <stack>
#include <string>
#include <cstring>
#include <vector>
#include <list>
#include <cstdlib>
#include <set>
#include <queue>
#define lowbit(x) x&(-x)
#define endl '\n'
#define sf(x) scanf("%d",&x)
#define rep(i,x) for(i=0;i<(x);i++)
#define gen(x) x##_
typedef long long ll;
const int maxx=2e5+10;
const double PI=acos(-1);
const int inf=0x3f3f3f3f;
using namespace std;
ll n,k;
bool vis[maxx];//i点是否到达过
int a[maxx];
void solve()
{
    scanf("%lld %lld",&n,&k);
    for(int i=1;i<=n;i++)
    {
        scanf("%d",&a[i]);
    }
    int x=1;//当前所在点
    vis[1]=1;
    int cnt=1;//
    while(!vis[a[x]])//目标没到达过
    {
        x=a[x];
        vis[x]=1;
        cnt++;
    }
    //此时环的终点为x,起点为a[x]
    int y=1;//当前所在点
    while(k&&y!=a[x])//从起点向后找环的起点
    {
        y=a[y];
        k--;
        cnt--;
    }
    //此时cnt为环的长度
    k%=cnt;
    while(k)//走完剩下的步数
    {
        y=a[y];
        k--;
    }
    printf("%d\n",y);
}
int main()
{
    int _t=1;

    //scanf("%d",&_t);
    while(_t--)
    {
        solve();
    }
    system("pause");
}

H

H - Bracket Sequencing 

题意:给出n个字符串只由(和)组成,问是否存在某种顺序使S1,S2...Sn拼成的字符串所有括号配对成功。

思路:首先,判断字符串是否合法,肯定是任意前缀(的个数大于等于)的个数,且整个字符串的(的个数等于)的个数。

对于一个字符串对拼接有影响一定是自身括号配对后剩余左右括号的个数。

自身配对后剩余(最多的字符串一定放在最左边;自身配对后剩余)最多的字符串一定放在最右边。

对于次左,由于左边有剩余左括号,若放 存在剩余右括号 的字符串,会消耗掉一定量的左括号。所以我们把消耗左括号少的,放到前面。(每次都会补充左括号,使左括号不断增多,消耗右括号最少,显然最优)右边同理,从右往左,一定是消耗右括号少的放在最右边。

综上,设每个字符串剩余(的个数为l,剩余)的个数为r。若l>=r,则放到左边。

对于左边的字符串,r越小,越往左;对于右边的字符串,l越小,越往右。

#include <stdio.h>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <iostream>
#include <map>
#include <stack>
#include <string>
#include <cstring>
#include <vector>
#include <list>
#include <cstdlib>
#include <set>
#include <queue>
#define PI pair<int,int>
#define lowbit(x) x&(-x)
#define endl '\n'
#define sf(x) scanf("%d",&x)
#define rep(i,x) for(i=0;i<(x);i++)
#define gen(x) x##_
typedef long long ll;
const int maxx=1e6+10;
const int inf=0x3f3f3f3f;
using namespace std;
int n;
string s;
vector<PI>a,b;
void solve()
{
    scanf("%d",&n);
    for(int i=1;i<=n;i++)
    {
        cin>>s;
        int len=s.length();
        int l=0,r=0;//统计 未配对 的左括号,右括号数量
        for(int j=0;j<len;j++)
        {
            if(s[j]=='(') l++;
            else
            {
                if(l) l--;
                else r++;
            }
        }
        if(l>=r) a.push_back(make_pair(l,r));//放左边
        else b.push_back(make_pair(l,r));//放右边
    }
    sort(a.begin(),a.end(),[](PI A,PI B)
    {
        return A.second<B.second;
    });
    sort(b.begin(),b.end(),[](PI A,PI B)
    {
        return A.first>B.first;
    });
    int sum=0;
    bool flag=true;
    for(int i=0;i<a.size();i++)
    {
        sum-=a[i].second;//匹配右括号
        if(sum<0) flag=false;//当前左括号的数量<右括号数量时 不满足
        sum+=a[i].first;//当前字符串所能提供的左括号
    }
    for(int i=0;i<b.size();i++)
    {
        sum-=b[i].second;
        if(sum<0) flag=false;
        sum+=b[i].first;
    }
    if(sum!=0) flag=false;//整个字符串的(的个数不等于)的个数。不满足
    if(flag) printf("Yes\n");
    else printf("No\n");
}
int main()
{
    int _t=1;

    //scanf("%d",&_t);
    while(_t--)
    {
        solve();
    }
    system("pause");
}

I

I - Regular Bracket Sequence

题意:给你一个包含(和),其他为?的字符串,其中?可以被替换成(或),问是否能凑成合法序列。

思路:首先字符串的长度必须为偶数,其次只要保证)不在首位,(不在末尾即可。

#include <stdio.h>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <iostream>
#include <map>
#include <stack>
#include <string>
#include <cstring>
#include <vector>
#include <list>
#include <cstdlib>
#include <set>
#include <queue>
#define lowbit(x) x&(-x)
#define endl '\n'
#define sf(x) scanf("%d",&x)
#define rep(i,x) for(i=0;i<(x);i++)
#define gen(x) x##_
typedef long long ll;
const int maxx=1e6+10;
using namespace std;
char s[110];
void solve()
{
    scanf("%s",s+1);
    int len=strlen(s+1);
    if(len&1)
    {
        printf("NO\n");
        return ;
    }
    if(s[1]==')'||s[len]=='(') printf("NO\n");
    else printf("YES\n");
}
int main()
{
    int _t=1;
    scanf("%d",&_t);
    while(_t--)
    {
        solve();
    }
    system("pause");
}

L - : (Colon)

题意:给你时针和分针的长度a,b,经过h小时,m分钟后,求时针和分针末端连线的长度。

#include <stdio.h>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <iostream>
#include <map>
#include <stack>
#include <string>
#include <cstring>
#include <vector>
#include <list>
#include <cstdlib>
#include <set>
#include <queue>
#define lowbit(x) x&(-x)
#define endl '\n'
#define sf(x) scanf("%d",&x)
#define rep(i,x) for(i=0;i<(x);i++)
#define gen(x) x##_
typedef long long ll;
const int maxx=110;
const double PI=acos(-1);
const int inf=0x3f3f3f3f;
using namespace std;
ll la,lb,h,m;
void solve()
{
    scanf("%lld %lld %lld %lld",&la,&lb,&h,&m);
    ll ta=0,tb=0;//min
    ta=h*60+m,tb=m;//时针运动时间,分针运动时间
    double ang=(double)abs(12*tb-ta)/360.0;
    ang*=PI;//两根针的角度
    printf("%.20f",sqrt(la*la+lb*lb-2*la*lb*cos(ang)));//a*a+b*b-c*c=2*a*b*cosC
}
int main()
{
    int _t=1;
    //scanf("%d",&_t);
    while(_t--)
    {
        solve();
    }
    system("pause");
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值