Yolo系列小目标改进与实战
文章平均质量分 84
将对小目标有效的方法和论文汇总到这个专栏,后续还会更新相关资源(有惊喜)
小羊一定要努力变强
心随天际飞扬,剑指千里天涯,怀揣梦想,热情未减,迎着梦幻的向往前行。低调中散发出谦逊的光芒,自律如律己之士,持续反思,岁月滋养,见证成长的足迹。
作为一个笔耕不辍的博主,坚持为大众奉献着充满正能量的文章,心怀公益,无私传播知识。在这片虚拟的天地里,化作一缕清风,将温暖和智慧洒向每一个角落。
内心深处,燃烧着对人工智能的热情,希望用智慧的火光,点燃历史的长夜。兴趣是指路明灯,情怀和使命感则成为前行的动力。在AI的浩瀚星空中,梦想着创造出能够改变历史潮流的奇迹。为科技的发展添砖加瓦,成为推动时代前行的一份子。
展开
-
YOLOv8改进策略:引入SPD-Conv技术以实现小目标精准检测
SPD-Conv是一种空间深度卷积技术,旨在增强小目标检测的性能。相较于传统的Depthwise Convolution,SPD-Conv引入了空间注意力机制,更有利于捕捉小目标的细节信息。通过引入空间关注力,SPD-Conv更加注重目标的空间分布,有助于捕捉小目标的微小特征。相比传统卷积,SPD-Conv在保持高性能的同时拥有更少的参数数量,有助于减少模型的复杂性。SPD-Conv在相同计算资源下能够实现更高的感知力,提高整体模型的效率。原创 2024-01-21 09:22:33 · 2936 阅读 · 2 评论 -
YOLOv8改进策略:融合LSKNet技术以打造更适合小目标的YOLOv8
随着计算机视觉的飞速发展,目标检测技术在各种应用场景中发挥着至关重要的作用。YOLOv8(You Only Look Once)系列一直以来以其高效、实时的特性受到广泛关注。然而,对于小目标的精准检测一直是目标检测领域的一个挑战。为了解决这一问题,本文提出了一种改进策略:将LSKNet技术融合到YOLOv8中,以打造更适合小目标检测的YOLOv8版本。在深入讨论改进策略之前,我们先回顾一下YOLOv8的基本架构。原创 2024-01-21 09:26:45 · 1472 阅读 · 2 评论 -
YOLOv8改进策略:NWD小目标检测新范式
YOLOv8是YOLO系列的最新版本,通过引入更多的技术创新和改进,实现了更高的检测精度和更快的推理速度。使用更深的骨干网络和更多的卷积层,提高了特征提取能力。结合了YOLOv4的CSPNet和YOLOv3的YOLOv3-tiny网络结构,取长补短,融合多个版本的优势。引入K-means聚类算法自动调整Anchor,适应不同尺寸目标的检测。原创 2024-01-21 09:07:59 · 3695 阅读 · 0 评论 -
小型目标检测中的Transformer:基准与最先进技术的全面综述
目标检测是计算机视觉领域中的核心任务之一,涵盖了物体定位和分类。小型目标检测在实际应用中具有重要意义,例如在无人机监测、医学图像分析等领域。通过本文的综述,我们全面了解了小型目标检测中Transformer的基准方法和最先进技术。从基础的Transformer原理到实际的目标检测应用,希望读者能够更深入地理解这一领域的前沿发展。小型目标检测领域的研究和创新将为未来计算机视觉的发展提供更多可能性。原创 2024-01-20 18:56:38 · 365 阅读 · 0 评论