机器学习期末考试题库【最全考试题库】

        本文有特别详细的机器学习这门课期末考试会考到的相关的概念,并配有相关的习题,大家把这一块学明白了,考试可以有很大的助力,喜欢的朋友点一下关注吧,持续关注我,我会后面陆续更新更多的资源哟~(づ ̄3 ̄)づ╭❤~

两天疯狂的用心整理(o(╥﹏╥)o),请大数据将我推向更多需要的朋友们吧!!!!!

目录

        本文有特别详细的模式识别这门课期末考试会考到的相关的概念,并配有相关的习题,大家把这一块学明白了,考试可以有很大的助力,喜欢的朋友点一下关注吧,持续关注我,我会后面陆续更新更多的资源哟~(づ ̄3 ̄)づ╭❤~

第一部分  问题

第二部分  答案


第一部分  问题

2.哪些机器学习算法不需要做归一化处理?

6.请简要说说一个完整机器学习项目的流程?

10.LR 和 SVM 的区别和联系?

24.请问(决策树.Random Forest.Boosting.Adaboot)GBDT 和XGBoost 的区别是什么?

25.说说常见的损失函数?

31.线性分类器与非线性分类器的区别以及优劣?

32.L2.L1 的区别?

36.具体 Google 是怎么利用贝叶斯方法,实现"拼写检查"的功能?

39.请详细说说 EM 算法?

42.机器学习中,为何要经常对数据做归一化?

49.随机森林如何评估特征重要性?

50.请说说 Kmeans 的优化?

51.KMeans 初始类簇中心点的选取。

52.解释对偶的概念。

53.如何进行特征选择?

54.衡量分类器的好坏?

56.数据预处理。

58.什麽造成梯度消失问题?

59.到底什么是特征工程?

60.你知道有哪些数据处理和特征工程的处理?

62.数据不平衡问题

63.特征比数据量还大时,选择什么样的分类器?

64.常见的分类算法有哪些?他们各自的优缺点是什么?

65.常见的监督学习算法有哪些?

66.说说常见的优化算法及其优缺点?

67.特征向量的归一化方法有哪些?

68.RF 与GBDT 之间的区别与联系?

69.证明样本空间任一点到超平面的距离公式

70.请比较下 EM 算法、HMM、CRF

71.带核的 SVM 为什么能分类非线性问题?

72.请说说常用核函数及核函数的条件

### 关于机器学习期末考试选择题 对于准备机器学习期末考试而言,构建一个有效的选择题题库是非常有帮助的。虽然具体题目会因不同学校和教师的要求而异,但可以总结一些常见的考点作为复习指南。 #### 常见的选择题主题 1. **基本概念** - 定义什么是监督学习、无监督学习以及强化学习。 - 解释分类与回归的区别[^1]。 2. **算法理解** - 描述K近邻(KNN)的工作原理及其优缺点。 - 讨论决策树如何处理缺失值的情况。 3. **模型评估** - 列举并解释混淆矩阵中的各个术语(TP, FP, TN, FN)。 - 对比交叉验证的不同方式如k折交叉验证的优点和局限性[^4]。 4. **特征工程** - 比较过滤式方法、包裹式方法和嵌入式方法的特点及应用场景[^3]。 - 掌握标准化(normalization) 和正则化(regularization) 的区别。 5. **实践应用** - 给定一组数据样本,判断是否存在过拟合现象,并给出改进措施。 - 使用给定的数据集计算线性回归方程,并预测新输入的结果。 ```python import numpy as np from sklearn.linear_model import LinearRegression # 示例:基于期中成绩预测期末成绩 X = np.array([[89], [72], [88], [76]]) # 期中得分 y = np.array([96, 84, 74, 78]) # 期末得分 model = LinearRegression() model.fit(X, y) new_student_score = [[80]] # 新学生的期中成绩 predicted_final_exam_score = model.predict(new_student_score) print(f"预计该生期末得分为:{predicted_final_exam_score}") ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小羊一定要努力变强

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值