本文有特别详细的机器学习这门课期末考试会考到的相关的概念,并配有相关的习题,大家把这一块学明白了,考试可以有很大的助力,喜欢的朋友点一下关注吧,持续关注我,我会后面陆续更新更多的资源哟~(づ ̄3 ̄)づ╭❤~
两天疯狂的用心整理(o(╥﹏╥)o),请大数据将我推向更多需要的朋友们吧!!!!!
目录
第一部分 问题
2.哪些机器学习算法不需要做归一化处理?
6.请简要说说一个完整机器学习项目的流程?
10.LR 和 SVM 的区别和联系?
24.请问(决策树.Random Forest.Boosting.Adaboot)GBDT 和XGBoost 的区别是什么?
25.说说常见的损失函数?
31.线性分类器与非线性分类器的区别以及优劣?
32.L2.L1 的区别?
36.具体 Google 是怎么利用贝叶斯方法,实现"拼写检查"的功能?
39.请详细说说 EM 算法?
42.机器学习中,为何要经常对数据做归一化?
49.随机森林如何评估特征重要性?
50.请说说 Kmeans 的优化?
51.KMeans 初始类簇中心点的选取。
52.解释对偶的概念。
53.如何进行特征选择?
54.衡量分类器的好坏?
56.数据预处理。
58.什麽造成梯度消失问题?
59.到底什么是特征工程?
60.你知道有哪些数据处理和特征工程的处理?
62.数据不平衡问题
63.特征比数据量还大时,选择什么样的分类器?
64.常见的分类算法有哪些?他们各自的优缺点是什么?
65.常见的监督学习算法有哪些?
66.说说常见的优化算法及其优缺点?
67.特征向量的归一化方法有哪些?
68.RF 与GBDT 之间的区别与联系?
69.证明样本空间任一点到超平面的距离公式
70.请比较下 EM 算法、HMM、CRF
71.带核的 SVM 为什么能分类非线性问题?
72.请说说常用核函数及核函数的条件