你一个由 '1'(陆地)和 '0'(水)组成的的二维网格,请你计算网格中岛屿的数量。
岛屿总是被水包围,并且每座岛屿只能由水平方向和/或竖直方向上相邻的陆地连接形成。
此外,你可以假设该网格的四条边均被水包围。
示例 1:
输入:grid = [
["1","1","1","1","0"],
["1","1","0","1","0"],
["1","1","0","0","0"],
["0","0","0","0","0"]
]
输出:1
示例 2:
输入:grid = [
["1","1","0","0","0"],
["1","1","0","0","0"],
["0","0","1","0","0"],
["0","0","0","1","1"]
]
输出:3
class Solution {
public:
// 四个方向的偏移量
static constexpr int dx[4] = {0, 0, 1, -1};
static constexpr int dy[4] = {1, -1, 0, 0};
void dfs(vector<vector<char>>& grid, int x, int y) {
if (x < 0 || y < 0 || x >= grid.size() || y >= grid[0].size() || grid[x][y] == '0') {
return;
}
grid[x][y] = '0'; // 访问过的地方标记成水
for (int i = 0; i < 4; i++) {
dfs(grid, x + dx[i], y + dy[i]);
}
}
int numIslands(vector<vector<char>>& grid) {
if (grid.empty() || grid[0].empty()) return 0;
int count = 0;
for (int i = 0; i < grid.size(); i++) {
for (int j = 0; j < grid[0].size(); j++) {
if (grid[i][j] == '1') {
++count;
dfs(grid, i, j);
}
}
}
return count;
}
};
刷题感悟:
(1)constexpr是再编译时声明,const是在运行时声明
(2)遍历图的四个方向的时候不要再紫萼x+1,x-1之类的了,可以考虑
static constexpr int dx[4]={0,0,1,-1}
static constexpr int dy[4]={1,-1,0,0}
for(int = 0;i<4;i++){
dfs(grid,x+ds[i],y+dy[i]}
遍历的方式,增加代码可读性