普朗克单色辐出度与功率体密度关系简单证明

普朗克辐射理论

  基于普朗克对黑体辐射的讨论,得到的结果一般有如下形式:

\rho_{\nu} =\dfrac{8\pi \rm h\nu^3}{\rm c^3} \cdot \dfrac{1}{\rm e^{\frac{\rm h\nu}{kT}}-1}

M(\nu,T)=\dfrac{2\pi \rm h \nu^3}{\rm c^2} \cdot \dfrac{1}{\rm e^{\frac{\rm h \nu}{k T}}-1}

  第一式为功率体密度,即:

\rho_{\nu}=\dfrac{\rm d E}{\rm dV \rm d \nu}

  上式中E为能量,V为体积,\nu为频率。

  第二式是单色能量辐出度:

M(\nu, T) = \dfrac{\rm d E}{\rm d \nu \rm d S}

  那么一式和二式有什么联系呢?

\rho_{\nu}=\dfrac{4}{\rm c}\cdot M(\nu, T)

  下面对此结论进行证明。

二者联系证明

  如图光源从元面积为\rm ds的小孔发射光束,该光束是在一立体角\varOmega范围发散的点光源,该点光源在空间某一平面上的面积如图,则可以微元法根据球坐标系的\theta求出元面积对应的立体角元\rm d \varOmega

\rm d \varOmega = \dfrac{\rm d S}{r^2} = \dfrac{2\pi \sin\theta r \rm d \theta}{r^2}

  这是一个空间量,光源从小孔出射产生能量,左边的光源在元面积\rm d s上产生的能量为c\rm d s\rho_{\nu} \rm d t,该能量也是小孔在单位球体积元内辐射的能量,所以右边一个立体角内的能量是c\rm d s \rho_{\nu} \rm dt \dfrac{\rm d \varOmega}{4\pi}其中4\pi是空间球面总的立体角。

  则有发散到右边的平面上的总能量通量为:

\varPhi = \dfrac{E}{\rm d t}=\displaystyle{\int {c\rm ds \rho_{\nu}\dfrac{\rm d \varOmega}{4 \pi}\cos\theta}}

  这是在球坐标系,其中\cos\theta为立体角元对应面积在平面上的投影,则:

\begin{aligned} M(\nu,T)&=\dfrac{\varPhi}{\rm ds} =\displaystyle{\int {c\rho_{\nu}\dfrac{\rm d \varOmega}{4 \pi}\cos\theta}}=\dfrac{c\rho_{\nu}}{4\pi}\cdot\displaystyle{\int^{\frac{\pi}{2}}_{0}2\pi\sin\theta\cos\theta\rm d \theta}\\ &=\dfrac{c\rho_{\nu}}{4\pi}\cdot\dfrac{\pi}{2}\cdot\displaystyle{\int^{\pi}_{0}sin\varphi\rm d \varphi} = \dfrac{c}{4}\cdot\rho_{\nu} \end{aligned}

  (注:这里积分范围是0到\frac{\pi}{2}因为光源内部只有球的一半,是因为光源只有右侧辐出。)

  这样就证明了:

\rho_{\nu} = \dfrac{4}{c}\cdot M(\nu,T)

频率波长转换

  那么能否将用频率\nu表示的式子换为用波长\lambda表示的式子呢?

  依据c=\lambda\nu

\rm d \nu =\rm d \dfrac{c}{\lambda} = \dfrac{-c\rm d \lambda}{\lambda^2}

  这样就完成了频率和波长量的换算。  

  • 10
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值