Chapter.1 一元函数积分
1.1 超高次三角式
有时会遇到次数很高的三角形式,形如
的形式。
这时候一般会想到凑微分,然后使用三角变换将式子化为单一三角函数的多项式形式。但这仅在
和
其中有一个是奇数的时候奏效,显然两个都是偶数的时候就无法处理。 偶数时候需要用简单的三角公式降次,当超高次的时候计算会变得很繁琐。
在三角多项式变为超高次时,可以将三角式子展开为如下形式:
这里的系数可以赋值得到。
这个式子的推导十分简单,由
展开上式,可得到最高次项自变量的系数是,差为2。
也可观察到三角多项式是一个周期函数,进行傅里叶展开,根据奇偶性选择展开方式后计算系数
根据公式:
可利用括号表示写为
由De Moivre公式
则有
而后出才可通过二倍角公式得到常数。
1.2 列表法和行列式
计算分部积分会用到列表法,但在计算一些具有循环结构的积分,如掺杂、
、
和
一类的积分时有些不同。
这里以
为例:
列表会出现:
这时候从指向
的负线可以被拉回指向
,这正好是一个行列式,从而原函数恰好为:
反向验证一下这个结论,对行列式函数求导,求导公式很好推导,结果为
与原式一致。
而该方法的出现实际上跟多元积分中的换元使用的雅可比行列式无关:
1.3 组合积分法
组合积分法的思想很简单,它依赖于最基本的代数空间思想,即使用几个相互独立的基向量来表示向量空间,通过求解基向量就可以得到空间内任意的向量线性组合。而这里将向量看成是函数泛函,就得到组合积分法。
这里给一个很简单的例子,例如下面的积分:
将该积分设为,同时设:
容易发现:
而这两个积分只需要做变换上下同时除就可以快速计算,从而解出
和
。
理论上,组合积分的思想可以解决任何积分问题,但是其操作起来未必简便,想要判断积分用组合积分会不会好算,可以参考一下几点:
待求空间最好由有理分式、三角函数、指数和复指数构成
这是因为有理分式可以消分母,三角函数可以通过多种变换消掉,而复指数可以依赖于欧拉公式。
选取少量的基就可以得到结果
这是因为若选的基很大,会得到复杂的方程组,这时候需要引入克莱姆法则求解,计算量更大。
每个基要相互独立,不可以互相表示
选一个空间的基的基本要求。
而具体选择什么基,需要根据具体情况确认。一般来说:对于有理分式,次的分母空间可以由
的线性组合来表示,选取其中的几个作为基就可以。为什么没必要选出所有的这些基向量呢,是在于我们的目的只是消去分母来化简计算,所以只要基向量构成的空间能够包含在分母空间被消掉来化简运算即可。而对于三角式,可以考虑表示分母的导数的基向量来化简。