最长公共子序列

任务:使用动态规划实现最长公共子序列问题

任务描述:给定序列X、Y,当另一序列Z既是X的子序列又是Y的子序列,且对于其他任意公共子序列W,都有|W| ≤ |Z|,则称Z是X和Y的最长公共子序列,记为LCS(X,Y)。

输入:序列X、Y

输出:最长公共子序列的长度和其中包含的元素

#include<stdio.h>

#include<string.h>

int c[200][200];

int b[200][200];

char f[200];

int Max(int m,int n,int i,int j)

{

    if(m > n)

    {

        b[i][j] = -1;

        return m;

    }

    else

    {

        b[i][j] = 1;

        return n;

    }

}

void print(int i,int j,int s,char x[],char y[])

{

    if(b[i][j] == 0)

    {

        f[s-1] = x[i-1];

        i--;j--;s--;

        print(i,j,s,x,y);

    }

    else if(b[i][j] == -1)

    {

        i--;

        print(i,j,s,x,y);

    }

    else if(b[i][j] == 1)

    {

        j--;

        print(i,j,s,x,y);

    }

}

int LCS(char x[],char y[])

{

    int i,j;

    int x_len,y_len;

    x_len = strlen(x);

    y_len = strlen(y);

    printf("   ");

    for(i = 0;i < y_len;i++)

    {

        printf("%c  ",y[i]);

    }

    printf("\n");

    for(i = 1;i <= x_len;i++)

    {

        printf("%c  ",x[i-1]);

        for(j = 1;j <= y_len;j++)

        {

            if(x[i-1] == y[j-1])

            {

                c[i][j] = c[i-1][j-1] +1;

                b[i][j] = 0;

                printf("%d  ",c[i][j]);

            }

            else

            {

                c[i][j] = Max(c[i-1][j],c[i][j-1],i,j);

                printf("%d  ",c[i][j]);

            }

        }

        printf("\n");

    }

    //打印X和Y的LCS

    printf("X和Y的LCS是:");

    print(x_len,y_len,c[x_len][y_len],x,y);

    printf("%s",f);

    printf("\n");

    return c[x_len][y_len];

}

int main()

{

    char X[200],Y[200];

    int i,j,s;

    printf("请输入字符串X:");

    scanf("%s",X);

    printf("请输入字符串Y:");

    scanf("%s",Y);

    s = LCS(X,Y);

    printf("X和Y的LCS: %d \n",s);

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值