合并果子(贪心)

题目:原题

题目描述:

在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。多多决定把所有的果子合成一堆。

每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和。可以看出,所有的果子经过 n-1 次合并之后, 就只剩下一堆了。多多在合并果子时总共消耗的体力等于每次合并所耗体力之和。

因为还要花大力气把这些果子搬回家,所以多多在合并果子时要尽可能地节省体力。假定每个果子重量都为 1 ,并且已知果子的种类 数和每种果子的数目,你的任务是设计出合并的次序方案,使多多耗费的体力最少,并输出这个最小的体力耗费值。

例如有 3 种果子,数目依次为 1 , 2 , 9 。可以先将 1 、 2 堆合并,新堆数目为 3 ,耗费体力为 3 。接着,将新堆与原先的第三堆合并,又得到新的堆,数目为 12 ,耗费体力为 12 。所以多多总共耗费体力 3+12=15 。可以证明 15 为最小的体力耗费值。

输入格式

共两行。  
第一行是一个整数 n,表示果子的种类数。  

第二行包含 n 个整数,用空格分隔,第 i 个整数 a  是第 i 种果子的数目。

## 输出格式

一个整数,也就是最小的体力耗费值。输入数据保证这个值小于 2^31 。

样例 1

样例输入 1

1 2 9

样例输出 1
15

 提示

对于 30% 的数据,保证有 n <= 1000:

对于 50% 的数据,保证有 n <= 5000;

对于全部的数据,保证有 n <= 10000。

思路:本题使用贪心,每一次合并最小的两堆果子即可。用优先队列(有小到大排列)。

#include<bits/stdc++.h>
using namespace std;
const int N = 1e4 + 10;
int a[N];
priority_queue<int,vector<int>,greater<int> > q;//小顶堆,有小到大
int main()
{
    int n;
    cin>>n;
    for(int i = 0;i < n;i++){
        cin>>a[i];
        q.push(a[i]);
    }
    int ans = 0;
    while(q.size() != 1)
    {
        int t1,t2;
        t1 = q.top();
        q.pop();
        t2 = q.top();
        q.pop();
        ans += t1 + t2;
        q.push(t1 + t2);
    }
    cout<<ans<<endl;
    return 0;
}

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值