题目:原题
题目描述:
在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。多多决定把所有的果子合成一堆。
每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和。可以看出,所有的果子经过 n-1 次合并之后, 就只剩下一堆了。多多在合并果子时总共消耗的体力等于每次合并所耗体力之和。
因为还要花大力气把这些果子搬回家,所以多多在合并果子时要尽可能地节省体力。假定每个果子重量都为 1 ,并且已知果子的种类 数和每种果子的数目,你的任务是设计出合并的次序方案,使多多耗费的体力最少,并输出这个最小的体力耗费值。
例如有 3 种果子,数目依次为 1 , 2 , 9 。可以先将 1 、 2 堆合并,新堆数目为 3 ,耗费体力为 3 。接着,将新堆与原先的第三堆合并,又得到新的堆,数目为 12 ,耗费体力为 12 。所以多多总共耗费体力 3+12=15 。可以证明 15 为最小的体力耗费值。
输入格式
共两行。
第一行是一个整数 n,表示果子的种类数。第二行包含 n 个整数,用空格分隔,第 i 个整数 a 是第 i 种果子的数目。
## 输出格式
一个整数,也就是最小的体力耗费值。输入数据保证这个值小于 2^31 。
样例 1
样例输入 1
3
1 2 9样例输出 1
15提示
对于 30% 的数据,保证有 n <= 1000:
对于 50% 的数据,保证有 n <= 5000;
对于全部的数据,保证有 n <= 10000。
思路:本题使用贪心,每一次合并最小的两堆果子即可。用优先队列(有小到大排列)。
#include<bits/stdc++.h>
using namespace std;
const int N = 1e4 + 10;
int a[N];
priority_queue<int,vector<int>,greater<int> > q;//小顶堆,有小到大
int main()
{
int n;
cin>>n;
for(int i = 0;i < n;i++){
cin>>a[i];
q.push(a[i]);
}
int ans = 0;
while(q.size() != 1)
{
int t1,t2;
t1 = q.top();
q.pop();
t2 = q.top();
q.pop();
ans += t1 + t2;
q.push(t1 + t2);
}
cout<<ans<<endl;
return 0;
}