实验2 几何变换与变形
实验2-1:图像缩放
实验要求:1)实现一个图像缩放函数,可以对输入图像进行任意倍数的缩放;
2)采用双线性插值进行重采样;
3)X,Y方向的缩放倍数参函数参数的形式传入;
4)可以只考虑输入图像为3通道,8位深度的情况;
5)不能调用图像处理库的缩放函数来完成;
参考函数:void Scale(const MyImage &input, MyImage &output, double sx, double sy);
对于实验一,先利用缩放倍数,求得缩放后图像的width和height。然后对缩放后图像中的每个像素点(x,y),利用如下公式:
x'=x/sx y'=y/sy (其中sx和sy分别为x和y轴上图像的缩放倍数)求得对应于缩放前图像中的(x',y'),满足f(x,y)=f(x',y')
由于x'和y'不一定为整数值,因而需要用双线性插值法求得f(x',y')
具体公式如下图
此外,对于缩放图像的左部和上部,会出现溢出问题,因此需要进行边界处理。
(而右下部不会出现该问题)
具体代码实现如下
#图像缩放
#input_img为输入图像,output_img为输出图像,x,y为缩放倍数
import math
import numpy as np
import cv2
input_img = cv2.imread('img.png')
cv2.namedWindow("input Image", cv2.WINDOW_AUTOSIZE)
cv2.imshow('input Image',input_img)
# 等待按键用来展示图片
# 释放窗口
x = 0.5
y = 1
width,height,dimension=input_img.shape #原图像的行和列数和维度
new_width=round(width*x) #缩放后图像的行数,取整
new_height=round(height*y)
output_img=np.zeros((new_width,new_height,dimension),dtype=np.uint8)#定义矩阵
for i in range(new_width) :
for j in range(new_height):
tempx=math.floor(i/x) #(i,j)还原为原图像的坐标值的整数部分
tempy=math.floor(j/y)
if tempx == 0 or tempy == 0 or tempx == width-1 or tempy == height-1:
output_img[0,j,:] = input_img[0,tempy,:] #处理缩放后图像在上和左可能出现边界溢出问题
output_img[i,0,:] = input_img[tempx,0,:] #右下边界不会出现溢出问题
#对其余像素进行处理
else:
# 计算原图像坐标减去新图像坐标的小数部分
a = i / x - tempx
b = j / y - tempy
output_img[i,j,:]=input_img[tempx,tempy,:]*(1-a)*(1-b) + (1-a)*b*input_img[tempx,tempy+1,:] + a*(1-b)*input_img[tempx+1,tempy,:] + a*b*input_img[tempx+1,tempy+1,:]
cv2.imshow("Scaled Image", output_img)
cv2.waitKey(0)
cv2.destroyAllWindows()
运行结果:
实验2-2:图像变形
实验2-2根据实验提供的公式,逐步求出所需变量即可。
具体代码实现如下
#图像变形
import math
import numpy as np
import cv2
input_img = cv2.imread('god.png')
cv2.namedWindow("input Image", cv2.WINDOW_AUTOSIZE)
cv2.imshow('input Image',input_img)
width,height,dimension=input_img.shape #原图像的行和列数和维度
output_img=np.zeros((width,height,dimension),dtype=np.uint8)#定义矩阵
for i in range(width):
for j in range(height):
#中心归一化
tempx=(i-0.5*width)/(0.5*width)
tempy=(j-0.5*height)/(0.5*height)
#计算r和θ
r=math.sqrt(math.pow(tempx,2)+math.pow(tempy,2))
xita=math.pow((1-r),2)
if r>=1:
x=tempx
y=tempy
else:
x=math.cos(xita)*tempx-math.sin(xita)*tempy
y=math.sin(xita)*tempx+math.cos(xita)*tempy
#上述x和y是中心归一化之后的坐标值,根据公式反推图像的x和y值
#必须使用(uint16()函数进行处理坐标,将其转化成无符号16位的int类型,否则坐标索引会出错
#uint8保存的数据,是0-255. uint16 保存的数据,是0-65535.
old_x=int((x + 1)*0.5*width)
old_y=int((y + 1)*0.5*height)
output_img[i,j,:]=input_img[old_x,old_y,:]
cv2.imshow("Reshaped Image", output_img)
cv2.waitKey(0)
cv2.destroyAllWindows()
运行结果: