以下是pytorch中文文档原文,根据自己的需要,可以选择合适的模型直接下载预训练好的模型,再调整最后一节全连接层输出。这样可以快速收敛,并且不用自己搭建网络。
torchvision.models
torchvision.models
模块的子模块中包含以下模型结构。
- AlexNet
- VGG
- ResNet
- SqueezeNet
- DenseNet
你可以使用随机初始化的权重来创建这些模型。
import torchvision.models as models
resnet18 = models.resnet18()
alexnet = models.alexnet()
squeezenet = models.squeezenet1_0()
densenet = models.densenet_161()
对于ResNet variants
和AlexNet
,我们也提供了预训练(pre-trained
)的模型。
import torchvision.models as models
#pretrained=True就可以使用预训练的模型
resnet18 = models.resnet18(pretrained=True)
alexnet = models.alexnet(pretrained=True)
ImageNet 1-crop error rates (224x224)
Network | Top-1 error | Top-5 error |
---|---|---|
ResNet-18 | 30.24 | 10.92 |
ResNet-34 | 26.70 | 8.58 |
ResNet-50 | 23.85 | 7.13 |
ResNet-101 | 22.63 | 6.44 |
ResNet-152 | 21.69 | 5.94 |
Inception v3 | 22.55 | 6.44 |
AlexNet | 43.45 | 20.91 |
VGG-11 | 30.98 | 11.37 |
VGG-13 | 30.07 | 10.75 |
VGG-16 | 28.41 | 9.62 |
VGG-19 | 27.62 | 9.12 |
SqueezeNet 1.0 | 41.90 | 19.58 |
SqueezeNet 1.1 | 41.81 | 19.38 |
Densenet-121 | 25.35 | 7.83 |
Densenet-169 | 24.00 | 7.00 |
Densenet-201 | 22.80 | 6.43 |
Densenet-161 | 22.35 | 6.20 |
torchvision.models.alexnet(pretrained=False, ** kwargs)
AlexNet
模型结构 paper地址
- pretrained (bool) –
True
, 返回在ImageNet上训练好的模型。
torchvision.models.resnet18(pretrained=False, ** kwargs)
构建一个resnet18
模型
- pretrained (bool) –
True
, 返回在ImageNet上训练好的模型。
torchvision.models.resnet34(pretrained=False, ** kwargs)
构建一个ResNet-34
模型.
Parameters: pretrained (bool) – True
, 返回在ImageNet上训练好的模型。
torchvision.models.resnet50(pretrained=False, ** kwargs)
构建一个ResNet-50
模型
- pretrained (bool) –
True
, 返回在ImageNet上训练好的模型。
torchvision.models.resnet101(pretrained=False, ** kwargs)
Constructs a ResNet-101 model.
- pretrained (bool) –
True
, 返回在ImageNet上训练好的模型。
torchvision.models.resnet152(pretrained=False, ** kwargs)
Constructs a ResNet-152 model.
- pretrained (bool) –
True
, 返回在ImageNet上训练好的模型。
torchvision.models.vgg11(pretrained=False, ** kwargs)
VGG 11-layer model (configuration “A”) - pretrained (bool) – True
, 返回在ImageNet上训练好的模型。
torchvision.models.vgg11_bn(** kwargs)
VGG 11-layer model (configuration “A”) with batch normalization
torchvision.models.vgg13(pretrained=False, ** kwargs)
VGG 13-layer model (configuration “B”)
- pretrained (bool) –
True
, 返回在ImageNet上训练好的模型。
torchvision.models.vgg13_bn(** kwargs)
VGG 13-layer model (configuration “B”) with batch normalization
torchvision.models.vgg16(pretrained=False, ** kwargs)
VGG 16-layer model (configuration “D”)
Parameters: pretrained (bool) – If True, returns a model pre-trained on ImageNet
torchvision.models.vgg16_bn(** kwargs)
VGG 16-layer model (configuration “D”) with batch normalization
torchvision.models.vgg19(pretrained=False, ** kwargs)
VGG 19-layer model (configuration “E”)
- pretrained (bool) –
True
, 返回在ImageNet上训练好的模型。
torchvision.models.vgg19_bn(** kwargs)
VGG 19-layer model (configuration ‘E’) with batch normalization
例子
使用
model_path = 'pre_res_model.ckpt'
first_train = False
if first_train:
net = torchvision.models.resnet18(weights=torchvision.models.ResNet18_Weights.IMAGENET1K_V1)
net.fc = nn.Linear(in_features=512, out_features=len(name2num), bias=True)
net.fc.apply(init_weight)
else:
net = models.resnet18()
net.fc = nn.Linear(in_features=512, out_features=len(name2num), bias=True)
net.fc.apply(init_weight)
model_weights = torch.load(model_path)
net.load_state_dict(model_weights)