A - 删数问题
Description
键盘输入一个高精度的正整数n(≤100位),去掉其中任意s个数字后剩下的数字按照原来的左右次序组成一个新的正整数。编程对给定的n与s,寻找一种方案,使得剩下的数字组成的新数最小。
Input
输入两个数字,分别为原始数n,要去掉的数字数s (s < n)。
Output
输出去掉s个数后最小的数
Sample
Input
178543 4
Output
13
/* 删数问题:
本题情况有一、、多
如果各位数字如果递增则删去最后一个顺,否则删去第一个递减的数
(可能和前面的数相等)
*/
#include<bits/stdc++.h>
using namespace std;
int main()
{
char n[105];
int s;
while(cin >> n >> s){
int len = strlen(n);
while(s--){
int i = 0;
while(n[i] <= n[i+1] && i + 1 < len)
i++;
if(i != len - 1){// 说明各位数都不递增,是递减的
for(int j = i; j < len; j++)
n[j] = n[j+1];// 就删去最高位的数
}
len--;// 当从头遍历这个数组时,最后一个数字自然没了
}
int i = 0;
while(n[i] == '0' && i < len)
i++;
if(i == len)
cout << "0" << endl;// 每个数都是0的情况
else{
for(int j = i; j < len; j++)// 从不为0的那一位开始输出
cout << n[j];
cout << endl;
}
}
system("pause");
return 0;
}
** 我尽力了
B - 活动选择
Description
学校的大学生艺术中心周日将面向全校各个学院的学生社团开放,但活动中心同时只能供一个社团活动使用,并且每一个社团活动开始后都不能中断。现在各个社团都提交了他们使用该中心的活动计划(即活动的开始时刻和截止时刻)。请设计一个算法来找到一个最佳的分配序列,以能够在大学生艺术中心安排不冲突的尽可能多的社团活动。
比如有5个活动,开始与截止时刻分别为:
最佳安排序列为:1,4,5。
Input
第一行输入活动数目n(0<n<100);
以后输入n行,分别输入序号为1到n的活动使用中心的开始时刻a与截止时刻b(a,b为整数且0<=a,b<24,a,b输入以空格分隔)。
Output
输出最佳安排序列所包含的各个活动(按照活动被安排的次序,两个活动之间用逗号分隔),如果有多个活动安排序列符合要求输出字典序最小的序列。
Sample
Input
6 8 10 9 16 11 16 14 15 10 14 7 11
Output
1,5,4
// 按结束时间升序排序即可
#include<bits/stdc++.h>
using namespace std;
struct node
{
int s, e, num;
}a[110], t;
int main()
{
int n, x;
cin >> n;
for(int i = 0; i < n; i++){
cin >> a[i].s >> a[i].e;
a[i].num = i + 1;
}
for(int i = 0; i < n - 1; i++){
for(int j = 0; j < n - 1 -i; j++){
if(a[j].e > a[j+1].e){
t = a[j];
a[j] = a[j+1];
a[j+1] = t;
}
}
}
x = a[0].e;
cout << a[0].num;
for(int i = 1; i < n; i++){
if(a[i].s >= x){
cout << "," << a[i].num;
x = a[i].e;
}
}
return 0;
}