A - 众数问题
Description
给定含有n个元素的多重集合S,每个元素在S中出现的次数称为该元素的重数。多重集S中重数最大的元素称为众数。例如,S={1,2,2,2,3,5}。多重集S的众数是2,其重数为3。对于给定的由n 个自然数组成的多重集S,计算S的众数及其重数。如果出现多个众数,请输出最小的那个。
Input
输入数据的第1行是多重集S中元素个数n(n<1300000);接下来的n行中,每行有一个最多含有5位数字的自然数,。
Output
输出数据的第1行给出众数,第2行是重数。
Samples
Sample #1
Input
6
1
2
2
2
3
5
Output
2
3
法一(简单粗暴版:桶排序+打擂台):
#include<iostream>
using namespace std;
const int N = 1e6 + 300005;
int cnt[N];
int main()
{
int n;
int maxn = -1;
scanf("%d", &n);
int temp;
while(n--){
int x;
scanf("%d", &x);
cnt[x] ++;
if(cnt[x] > maxn || (cnt[x] == maxn && x < temp)){
maxn = cnt[x];
temp = x;
}
}
cout << temp << endl;
cout << maxn << endl;
return 0;
}
法二(传说中的分治算法!!):
#include<iostream>
#include<algorithm>
using namespace std;
const int N = 1e6 + 300005;
int a[N];
int ans = 0, idx = 0;
void split(int l, int r){
if(l > r) return ;
int ll = l, rr = r;
int mid = (l + r) >> 1;
for(; l < mid && a[l] != a[mid]; l++);
for(; r > mid && a[r] != a[mid]; r--);
// 此时众数的个数为r - (l - 1)
if(ans <= r - (l - 1)){
if(ans == r - (l - 1)){
idx = min(mid, idx);
}else{
idx = mid;
}
ans = r - (l - 1);
}
if(l - 1 - (ll - 1) >= ans){// 左边可能有一组个数更多且数字与中位数不同的众数
split(ll, l - 1);
}
if(rr - (r + 1) + 1){// 右边同上
split(r + 1, rr);
}
}
int main()
{
int n;
cin >> n;
for(int i = 0; i < n; i++){
cin >> a[i];
}
sort(a, a + n);
split(0, n - 1);
cout << a[idx] << endl;
cout << ans << endl;
return 0;
}
B - 整数因子分解问题
Description
大于1的正整数n可以分解为:n=x1*x2*…*xm。例如,当n=12 时,共有8 种不同的分解式:
12=12;
12=6*2;
12=4*3;
12=3*4;
12=3*2*2;
12=2*6;
12=2*3*2;
12=2*2*3。
对于给定的正整数n,计算n共有多少种不同的分解式。
Input
输入数据只有一行,有1个正整数n (1≤n≤2000000000)。
Output
将计算出的不同的分解式数输出。
Samples
Sample #1
Input
Output
12
8
#include<bits/stdc++.h>
using namespace std;
const int N = 5e5;// !!!
const int M = 2e4+10;
const int INF = 0x3f3f3f3f;
typedef long long LL;
int s[N];
LL f(int x){
LL ans = 1;
if(x < N && s[x] != 0){
return s[x];
}
for(int i = 2; i <= sqrt(x); i++){
if(x % i == 0){
ans += f(i);
if(i * i != x){
ans += f(x / i);
}
}
}
if(x < N) s[x] = ans;
return ans;
}
int main()
{
int n;
cin >> n;
cout << f(n) << endl;
return 0;
}
C - 顺序表应用7:最大子段和之分治递归法
Description
给定n(1<=n<=50000)个整数(可能为负数)组成的序列a[1],a[2],a[3],…,a[n],求该序列如a[i]+a[i+1]+…+a[j]的子段和的最大值。当所给的整数均为负数时定义子段和为0,依此定义,所求的最优值为: Max{0,a[i]+a[i+1]+…+a[j]},1<=i<=j<=n。 例如,当(a[1],a[2],a[3],a[4],a[5],a[6])=(-2,11,-4,13,-5,-2)时,最大子段和为20。
注意:本题目要求用分治递归法求解,除了需要输出最大子段和的值之外,还需要输出求得该结果所需的递归调用总次数。
递归调用总次数的获得,可以参考以下求菲波那切数列的代码段中全局变量count的用法:
#include
int count=0;
int main()
{
int n,m;
int fib(int n);
scanf("%d",&n);
m=fib(n);
printf("%d %d\n",m,count);
return 0;
}
int fib(int n)
{
int s;
count++;
if((n==1)||(n==0)) return 1;
else s=fib(n-1)+fib(n-2);
return s;
}
Input
第一行输入整数n(1<=n<=50000),表示整数序列中的数据元素个数;
第二行依次输入n个整数,对应顺序表中存放的每个数据元素值。
Output
一行输出两个整数,之间以空格间隔输出:
第一个整数为所求的最大子段和;
第二个整数为用分治递归法求解最大子段和时,递归函数被调用的总次数。
Samples
Sample #1
Input
Output
6 -2 11 -4 13 -5 -2
20 11
#include<bits/stdc++.h>
using namespace std;
const int N = 5e4 + 10;
const int INF = 0x3f3f3f3f;
typedef long long LL;
// 真是酣畅淋漓的一场分治算法!
int a[N], cnt;
int MaxSubSum(int a[], int l, int r){
int sum = 0;
// 统计递归调用次数
cnt ++;
if(l == r) sum = a[l] > 0 ? a[l] : 0;// 递归出口
else{
int mid = l + r >> 1;
int lsum = MaxSubSum(a, l, mid);
int rsum = MaxSubSum(a, mid + 1, r);
int s1 = 0, lefts = 0;
for(int i = mid; i >= l; i--){
lefts += a[i];
s1 = max(lefts, s1);
}
int s2 = 0, rights = 0;
for(int i = mid + 1; i <= r; i++){
rights += a[i];
s2 = max(rights, s2);
}
// 比较左、中、右的字段和
sum = s1 + s2;
sum = max(sum, lsum);
sum = max(sum, rsum);
}
return sum;
}
int main()
{
int n;
cin >> n;
for(int i = 0; i < n; i++){
cin >> a[i];
}
cout << MaxSubSum(a, 0, n - 1) << ' ' << cnt << endl;
return 0;
}
D - 骨牌铺方格
Description
在2×n的一个长方形方格中,用一个1× 2的骨牌铺满方格,输入n ,输出铺放方案的总数. 例如n=3时,为2× 3方格,骨牌的铺放方案有三种,如下图:
Input
输入包含一个整数n,表示该测试实例的长方形方格的规格是2×n (0< n<=50)。
Output
输出铺放方案的总数。
Samples
Sample #1
Input
3
Output
3
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N = 55;
LL a[N];
int main(){
int n;
scanf("%d", &n);
a[1] = 1;
a[2] = 2;
for(int i = 3; i <= n; i++){
a[i] = a[i-1] + a[i-2];
}
printf("%lld\n", a[n]);
return 0;
}
**经过推理,会发现答案遵循斐波那契数列。。。呜呜呜