SDUT OJ《算法分析与设计》分治算法

A - 众数问题

Description

给定含有n个元素的多重集合S,每个元素在S中出现的次数称为该元素的重数。多重集S中重数最大的元素称为众数。例如,S={1,2,2,2,3,5}。多重集S的众数是2,其重数为3。对于给定的由n 个自然数组成的多重集S,计算S的众数及其重数。如果出现多个众数,请输出最小的那个。

Input

输入数据的第1行是多重集S中元素个数n(n<1300000);接下来的n行中,每行有一个最多含有5位数字的自然数,。

Output

输出数据的第1行给出众数,第2行是重数。

Samples

Sample #1
Input 

6

1

2

2

2

3

5

Output 

2

3

法一(简单粗暴版:桶排序+打擂台):

#include<iostream>
using namespace std;
const int N = 1e6 + 300005;
int cnt[N];
int main()
{
	int n;
	int maxn = -1;
	scanf("%d", &n);
	int temp;
	while(n--){
		int x;
		scanf("%d", &x);
		cnt[x] ++;
		if(cnt[x] > maxn  || (cnt[x] == maxn && x < temp)){
			maxn = cnt[x];
			temp = x;
		}
	}
	cout << temp << endl;
	cout << maxn << endl;
	return 0;
}

法二(传说中的分治算法!!):

#include<iostream>
#include<algorithm>
using namespace std;
const int N = 1e6 + 300005;
int a[N];
int ans = 0, idx = 0;

void split(int l, int r){
	if(l > r) return ;

	int ll = l, rr = r;
	int mid = (l + r) >> 1;

	for(; l < mid && a[l] != a[mid]; l++);
	for(; r > mid && a[r] != a[mid]; r--);
	// 此时众数的个数为r - (l - 1)
	if(ans <= r - (l - 1)){
		if(ans == r - (l - 1)){
			idx = min(mid, idx);
		}else{
			idx = mid;
		}
		ans = r - (l - 1);
	}
	if(l - 1 - (ll - 1) >= ans){// 左边可能有一组个数更多且数字与中位数不同的众数
		split(ll, l - 1);
	}
	if(rr - (r + 1) + 1){// 右边同上
		split(r + 1, rr);
	}
}
int main()
{
	int n;
	cin >> n;
	for(int i = 0; i < n; i++){
		cin >> a[i];
	}
	sort(a, a + n);
	split(0, n - 1);
	
	cout << a[idx] << endl;
	cout << ans << endl;
	return 0;
}

B - 整数因子分解问题

Description

大于1的正整数n可以分解为:n=x1*x2*…*xm。例如,当n=12 时,共有8 种不同的分解式:
12=12;
12=6*2;
12=4*3;
12=3*4;
12=3*2*2;
12=2*6;
12=2*3*2;
12=2*2*3。
对于给定的正整数n,计算n共有多少种不同的分解式。

Input

输入数据只有一行,有1个正整数n (1≤n≤2000000000)。

Output

将计算出的不同的分解式数输出。

Samples

Sample #1
Input 
Output 
12
8
#include<bits/stdc++.h>
using namespace std;
const int N = 5e5;// !!!
const int M = 2e4+10;
const int INF = 0x3f3f3f3f;
typedef long long LL;

int s[N];
LL f(int x){
    LL ans = 1;
    if(x < N && s[x] != 0){
        return s[x];
    }
    for(int i = 2; i <= sqrt(x); i++){
        if(x % i == 0){
            ans += f(i);
            if(i * i != x){
                ans += f(x / i);
            }
        }
    }
    if(x < N) s[x] = ans;
    return ans;
}
int main()
{
    int n;
    cin >> n;
    cout << f(n) << endl;
    return 0;
}

C - 顺序表应用7:最大子段和之分治递归法

Description

给定n(1<=n<=50000)个整数(可能为负数)组成的序列a[1],a[2],a[3],…,a[n],求该序列如a[i]+a[i+1]+…+a[j]的子段和的最大值。当所给的整数均为负数时定义子段和为0,依此定义,所求的最优值为: Max{0,a[i]+a[i+1]+…+a[j]},1<=i<=j<=n。 例如,当(a[1],a[2],a[3],a[4],a[5],a[6])=(-2,11,-4,13,-5,-2)时,最大子段和为20。

注意:本题目要求用分治递归法求解,除了需要输出最大子段和的值之外,还需要输出求得该结果所需的递归调用总次数。

递归调用总次数的获得,可以参考以下求菲波那切数列的代码段中全局变量count的用法:

#include
int count=0;
int main()
{
int n,m;
int fib(int n);
scanf("%d",&n);
m=fib(n);
printf("%d %d\n",m,count);
return 0;
}
int fib(int n)
{
int s;
count++;
if((n==1)||(n==0)) return 1;
else s=fib(n-1)+fib(n-2);
return s;
}

Input

第一行输入整数n(1<=n<=50000),表示整数序列中的数据元素个数;

第二行依次输入n个整数,对应顺序表中存放的每个数据元素值。

Output

一行输出两个整数,之间以空格间隔输出:

第一个整数为所求的最大子段和;

第二个整数为用分治递归法求解最大子段和时,递归函数被调用的总次数。

Samples

Sample #1
Input 
Output 
6
-2 11 -4 13 -5 -2
20 11
#include<bits/stdc++.h>
using namespace std;
const int N = 5e4 + 10;
const int INF = 0x3f3f3f3f;
typedef long long LL;
// 真是酣畅淋漓的一场分治算法!
int a[N], cnt;
int MaxSubSum(int a[], int l, int r){
    int sum = 0;
    // 统计递归调用次数
    cnt ++;
    if(l == r) sum = a[l] > 0 ? a[l] : 0;// 递归出口
    else{
        int mid = l + r >> 1;
        int lsum = MaxSubSum(a, l, mid);
        int rsum = MaxSubSum(a, mid + 1, r);
        int s1 = 0, lefts = 0;
        for(int i = mid; i >= l; i--){
            lefts += a[i];
            s1 = max(lefts, s1);
        }
        int s2 = 0, rights = 0;
        for(int i = mid + 1; i <= r; i++){
            rights += a[i];
            s2 = max(rights, s2);
        }
        // 比较左、中、右的字段和
        sum = s1 + s2;
        sum = max(sum, lsum);
        sum = max(sum, rsum);
    }
    return sum;
}
int main()
{
    int n;
    cin >> n;
    for(int i = 0; i < n; i++){
        cin >> a[i];
    }
    cout << MaxSubSum(a, 0, n - 1) << ' ' << cnt << endl;
    return 0;
}

D - 骨牌铺方格

Description

在2×n的一个长方形方格中,用一个1× 2的骨牌铺满方格,输入n ,输出铺放方案的总数. 例如n=3时,为2× 3方格,骨牌的铺放方案有三种,如下图:

Input

输入包含一个整数n,表示该测试实例的长方形方格的规格是2×n (0< n<=50)。

Output

输出铺放方案的总数。

Samples

Sample #1
Input 

3

Output 

3

#include<bits/stdc++.h>
using namespace std;

typedef long long LL;
const int N = 55;
LL a[N];

int main(){
    int n;
    scanf("%d", &n);
    a[1] = 1;
    a[2] = 2;
    for(int i = 3; i <= n; i++){
        a[i] = a[i-1] + a[i-2];
    }
    printf("%lld\n", a[n]);
    return 0;
}

**经过推理,会发现答案遵循斐波那契数列。。。呜呜呜

SDUT-OJ(Software Development University of Tsinghua Online Judge)是一个在线编程平台,提供给清华大学软件学院的学生和爱好者练习和解决算法问题的环境,其中包括各种计算机科学题目,包括数据结构、算法、图形等。对于"最小生成树"(Minimum Spanning Tree, MST)问题,它是图论中的经典问题,目标是从一个加权无向图中找到一棵包含所有顶点的树,使得树的所有边的权重之和最小。 在C语言中,最常见的是使用Prim算法或Kruskal算法来求解最小生成树。Prim算法从一个顶点开始,逐步添加与当前生成树相连且权重最小的边,直到所有顶点都被包含;而Kruskal算法则是从小到大对所有边排序,每次选取没有形成环的新边加入到树中。 如果你想了解如何用C语言实现这些算法,这里简单概括一下: - 通常使用优先队列(堆)来存储边和它们的权重,以便快速查找最小值。 - 从任意一个顶点开始,遍历与其相邻的边,若新边不形成环,就更新树,并将新边加入优先队列。 - Kruskal算法: - 先将所有的边按照权重升序排序。 - 创建一个空的最小生成树,然后依次取出排序后的边,如果这条边连接的两个顶点不在同一个连通分量,则将其添加到树中。 如果你需要更详细的代码示例,或者有具体的问题想了解(比如如何处理环、如何实现优先队列等),请告诉我,我会为你提供相应的帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值