ACM比赛模板总结

以下为笔者学习过程中记录的模板资料,仅记录

快速幂模板

ll ksm(ll a,ll b)
{
	ll ans=1;
	while(b)
	{
		if(b&1)ans=ans*a;
		a=a*a;
		b>>=1;
	}
	return ans;
}

欧拉函数(求小于a且与a互质的数的个数)

ll Eular(ll a){//求小于a与a互质的数
	ll ans=n;
	for(int i=2;i*i<=n;i++){
		if(n%i==0){
			ans=ans/i*(i-1);
			while(n%i==0){
				n/=i;
			}
		}
	}
	if(n>1){
		ans=ans/n*(n-1);
	}
	return ans;
}

欧拉筛,筛素数

bool isPrime[100000010];//isPrime[i] == 1表示:i是素数
ll Prime[6000010], cnt = 0;//Prime存质数
void GetPrime(ll n)//筛到n
{
	memset(isPrime, 1, sizeof(isPrime));
	//以“每个数都是素数”为初始状态,逐个删去
	isPrime[1] = 0;//1不是素数

	for(ll i = 2; i <= n; i++)
	{
		if(isPrime[i])//没筛掉
			Prime[++cnt] = i; //i成为下一个素数

		for(ll j = 1; j <= cnt && i*Prime[j] <= n/*不超上限*/; j++)
		{
        	//从Prime[1],即最小质数2开始,逐个枚举已知的质数,并期望Prime[j]是(i*Prime[j])的最小质因数
            //当然,i肯定比Prime[j]大,因为Prime[j]是在i之前得出的
			isPrime[i*Prime[j]] = 0;

			if(i % Prime[j] == 0)//i中也含有Prime[j]这个因子
				break; //重要步骤。见原理
		}
	}
}

并查集模板

int find(int x)
{
	if(father[x]!=x)
		father[x]=find(father[x]);
	return father[x];
}
void unionn(int x,int y)
{
	int a=find(x);
	int b=find(y);
	father[a]=b;
}

动态规划——一维dp(背包问题)

cin>>time>>n;
for(int i=1;i<=n;i++){
    cin>>t[i]>>v[i];
}
for(int i=1;i<=n;i++){
    for(int j=time;j>=t[i];j--){//time为限制条件
        dp[j]=max(dp[j],dp[j-t[i]]+v[i]);
    }
}
cout<<dp[time];

博弈论——威佐夫博弈(简单博弈论)

cin>>n>>m;
if(n<m)swap(n,m);
if(floor((1+sqrt(5))/2*(n-m))==m){//向下取整
	cout<<"1";//先手必败
}else{
	cout<<"2";//后手必败
}

数论——区间素数的个数(洛谷模板题P1865,他的名字就是骗人的,题目内容和标题无关)A % B problem

const ll N = 1e6+10;
int a[N];
bool vis[N];
int n,m;
void shai()
{
    a[1] = 0;
    vis[1] = 1;
    for(int i = 2;i <= n;i++){
        if(!vis[i]){
            a[i] = a[i-1]+1;
            for(int j = i*2;j <= n;j=j+i){
                vis[j] = 1;
            }
        }
        else{
            a[i] = a[i-1];
        }
    }
}

KMP算法模板求next数组

void ini()
{
    nxt[0] = -1;
    int k = -1, i = 0;
    while (i < s2.size())
    {
        if (k == -1 || s2[k] == s2[i])
        {
            i++;
            k++;
            nxt[i] = k;
        }
        else
        {
            k = nxt[k];
        }
    }
}

仅为笔记记录使用,更多模板持续更新

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值