机器学习测试、期末考试题(部分)

函数里面的()和()之间的对应关系在集合呈现直线(平面或者超平面)
正确答案:
(1) 自变量
(2) 因变量

用()来拟合真实世界中的一些规律  
正确答案:
(1) 直线;曲线;平面;超平面

编写函数:计算代价函数 J
def compute_cost(x, y, w, b): 
正确答案:
答案解析:def compute_cost(x, y, w, b):    m = x.shape[0]     cost_sum = 0     for i in range(m):         f_wb = w * x[i] + b           cost = (f_wb - y[i]) ** 2          cost_sum = cost_sum + cost      total_cost = (1 / (2 * m)) * cost_sum  
    return total_cost

编写函数:计算梯度
def compute_gradient(x, y, w, b):
正确答案:
答案解析:def compute_gradient(x, y, w, b):        m = x.shape[0]        dj_dw = 0    dj_db = 0        for i in range(m):          f_wb = w * x[i] + b         dj_dw_i = (f_wb - y[i]) * x[i]         dj_db_i = f_wb - y[i]         dj_db += dj_db_i        dj_dw += dj_dw_i     dj_dw = dj_dw / m     dj_db = dj_db / m             return dj_dw, dj_db

已知数据(x、y),初始权重(w_init)、偏差(b_init),迭代次数(iters),学习率(alpha),
梯度计算函数compute_gradient(x, y, w, b)。
请编写线性回归中使用梯度下降法更新w、b的策略:
正确答案:
答案解析:w = w_init  b = b_init
for i in range(iters):        dj_dw, dj_db = compute_gradient(x, y, w, b)                     w = w - alpha * dj_dw        b = b - alpha * dj_db           

简述梯度下降法的主要步骤。
1.赋初值k,b
2.求偏导得到i,j
3.i,j分别赋值给b,k,反复计算
4.根据啊法的值的取值调节代价函数大小

线性回归与逻辑回归的区别。
正确答案:
答案解析:线性回归主要解决回归任务,逻辑回归主要解决分类问题;线性回归的输出一般是连续的,逻辑回归的输出一般是离散的;逻辑回归的输入是线性回归的输出;线性回归的损失函数是MSE,逻辑回归中,采用的是负对数损失函数。线性回归做分类因为考虑了所有样本点到分类决策面的距离,所以在两类数据分布不均匀的时候将导致误差非常大;而LR克服了这个缺点,其中LR将所有数据采用sigmod函数进行了非线性映射,削弱远离分类决策面的数据的作用。

解决过拟合问题的方法。
交叉验证
用更多的数据进行训练
移除特征
正则化

神经网络的基本结构包括()、()、()这三种结构。
正确答案:
(1) 输入层
(2) 隐藏层
(3) 输出层

前向传播,首先根据公式z=w.T x +b得到z,z经过sigmoid即可得到输出。请补全下列代码语句。
正确答案:
答案解析:s = 1.0/(1+np.exp(-z))cost = -(1.0/m)*np.sum(Y*np.log(A)+(1-Y)*np.log(1-A))dw = (1.0/m)*np.dot(X,(A-Y).T)db = (1.0/m)*np.sum(A-Y)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值