函数里面的()和()之间的对应关系在集合呈现直线(平面或者超平面)
正确答案:
(1) 自变量
(2) 因变量
用()来拟合真实世界中的一些规律
正确答案:
(1) 直线;曲线;平面;超平面
编写函数:计算代价函数 J
def compute_cost(x, y, w, b):
正确答案:
答案解析:def compute_cost(x, y, w, b): m = x.shape[0] cost_sum = 0 for i in range(m): f_wb = w * x[i] + b cost = (f_wb - y[i]) ** 2 cost_sum = cost_sum + cost total_cost = (1 / (2 * m)) * cost_sum
return total_cost
编写函数:计算梯度
def compute_gradient(x, y, w, b):
正确答案:
答案解析:def compute_gradient(x, y, w, b): m = x.shape[0] dj_dw = 0 dj_db = 0 for i in range(m): f_wb = w * x[i] + b dj_dw_i = (f_wb - y[i]) * x[i] dj_db_i = f_wb - y[i] dj_db += dj_db_i dj_dw += dj_dw_i dj_dw = dj_dw / m dj_db = dj_db / m return dj_dw, dj_db
已知数据(x、y),初始权重(w_init)、偏差(b_init),迭代次数(iters),学习率(alpha),
梯度计算函数compute_gradient(x, y, w, b)。
请编写线性回归中使用梯度下降法更新w、b的策略:
正确答案:
答案解析:w = w_init b = b_init
for i in range(iters): dj_dw, dj_db = compute_gradient(x, y, w, b) w = w - alpha * dj_dw b = b - alpha * dj_db
简述梯度下降法的主要步骤。
1.赋初值k,b
2.求偏导得到i,j
3.i,j分别赋值给b,k,反复计算
4.根据啊法的值的取值调节代价函数大小
线性回归与逻辑回归的区别。
正确答案:
答案解析:线性回归主要解决回归任务,逻辑回归主要解决分类问题;线性回归的输出一般是连续的,逻辑回归的输出一般是离散的;逻辑回归的输入是线性回归的输出;线性回归的损失函数是MSE,逻辑回归中,采用的是负对数损失函数。线性回归做分类因为考虑了所有样本点到分类决策面的距离,所以在两类数据分布不均匀的时候将导致误差非常大;而LR克服了这个缺点,其中LR将所有数据采用sigmod函数进行了非线性映射,削弱远离分类决策面的数据的作用。
解决过拟合问题的方法。
交叉验证
用更多的数据进行训练
移除特征
正则化
神经网络的基本结构包括()、()、()这三种结构。
正确答案:
(1) 输入层
(2) 隐藏层
(3) 输出层
前向传播,首先根据公式z=w.T x +b得到z,z经过sigmoid即可得到输出。请补全下列代码语句。
正确答案:
答案解析:s = 1.0/(1+np.exp(-z))cost = -(1.0/m)*np.sum(Y*np.log(A)+(1-Y)*np.log(1-A))dw = (1.0/m)*np.dot(X,(A-Y).T)db = (1.0/m)*np.sum(A-Y)